Lightwave engineering /

Saved in:
Bibliographic Details
Author / Creator:Kokubun, Y.
Imprint:Boca Raton, FL : CRC Press, c2013.
Description:xxi, 351 p. : ill. ; 24 cm.
Language:English
Series:Optical science and engineering
Optical science and engineering (Boca Raton, Fla.)
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/8968350
Hidden Bibliographic Details
ISBN:1420046489
9781420046489
Notes:Includes bibliographical references and index.
Table of Contents:
  • List of Figures
  • List of Tables
  • Preface
  • Author Biography
  • Part I. Introduction
  • Chapter 1. Fundamentals of Optical Propagation
  • 1.1. Parameters and Units Used to Describe Light
  • 1.2. Optical Coherence
  • 1.3. Fundamental Equations of the Electromagnetic s' Fields and Plane Waves
  • 1.3.1. Electromagnetic Wave Equations
  • 1.3.2. Plane Wave Propagation Constant
  • 1.3.3. Propagation Velocity and Power Flow Density of a Plane Wave
  • 1.4. Reflection and Refraction of Plane Waves
  • 1.4.1. Refractive Index and Snell's Law
  • 1.4.2. Amplitude Reflectance and Power Reflectivity
  • 1.4.3. Reflection from a Metal Surface
  • 1.4.4. Total Internal Reflection
  • 1.5. Polarization and Birefringence
  • 1.6. Propagation of a Plane Wave in a Medium with Gain and Absorption Loss
  • 1.7. Wave Front and Light Rays
  • Chapter 2. Fundamentals of Optical Waveguides
  • 2.1. Free-Space Waves and Guided Waves
  • 2.2. Guided Mode and Eigenvalue Equations
  • 2.3. Eigenmode and Dispersion Curves
  • 2.4. Electromagnetic Distribution and Eigenmode Expansion
  • 2.5. Fundamental Properties of Multimode Waveguides
  • 2.6. Transmission Band of Multimode Waveguide
  • 2.6.1. Phase Velocity and Group Velocity
  • 2.6.2. Pulse Propagation and Frequency Response in Multimode Waveguides
  • Chapter 3. Propagation of Light Beams in Free Space
  • 3.1. Representation of Spherical Waves and the Diffraction Phenomenon
  • 3.2. Fresnel Diffraction and Fraunhofer Diffraction
  • 3.3. Fraunhofer Diffraction of a Gaussian Beam
  • 3.4. Wave Front Transformation Effect of the Lens
  • 3.5. Fourier Transform with Lenses
  • Chapter 4. Interference and Resonators
  • 4.1. Principle of Two-Beam Interference
  • 4.2. Resonators
  • 4.3. Various Interferometers
  • 4.4. Diffraction by Gratings
  • 4.5. Multilayer Thin Film Interference
  • Part II. Description of Light Propagation through Electromagnetism
  • Chapter 5. Guided Wave Optics
  • 5.1. General Concept of the Guided Modes
  • 5.1.1. Wave Equations and Boundary Conditions
  • 5.1.2. Classification of Eigenmodes and Propagation Constants
  • 5.1.3. Electromagnetic Field Distribution, Near-Field Pattern, and Spot Size
  • 5.1.4. Mode Orthogonality and Eigenmode Expansion
  • 5.1.5. Far-Field Pattern and Numerical Aperture
  • 5.1.6. Optical Confinement Factor
  • 5.1.7. Single-Mode Condition and Mode Number
  • 5.2. Fundamental Structure and Mode of the Optical Waveguide
  • 5.2.1. Two-Dimensional Slab Waveguide
  • 5.2.2. Three-Dimensional Waveguides
  • Chapter 6. Optical Fibers
  • 6.1. Optical Fiber Modes
  • 6.1.1. Eigenvalue Equations of Optical Fibers
  • 6.1.2. Weakly Guiding Approximation
  • 6.1.3. Classification of Modes
  • 6.1.4. LP Mode and Dispersion Curves
  • 6.1.5. Fundamental Mode and Single-Mode Fibers
  • 6.1.6. Polarization Properties of Single-Mode Fibers and Polarization-Maintaining Fiber
  • 6.1.7. Distributed Index Single-Mode Fibers
  • 6.1.8. Distributed Index Multimode Fibers
  • 6.2. Signal Propagation in Optical Fiber
  • 6.2.1. Group Delay and Dispersion
  • 6.2.2. Dispersion in Single-Mode Optical Fibers
  • 6.2.3. Transmission Bandwidth of Single-Mode Fibers
  • 6.2.4. Dispersion-Shifted Fiber and Dispersion Compensation
  • 6.3. Transmission Characteristics of Distributed Index Multimode Fibers
  • 6.3.1. Group Delay of Multimode Optical Fibers
  • 6.3.2. Transmission Capacity of ¿-Power Profile Fibers
  • 6.4. Optical Fiber Communication
  • Chapter 7. Propagation and Focusing of the Beam
  • 7.1. Gaussian Beam
  • 7.2. Propagation of the Gaussian Beam
  • 7.3. Wave Coefficient and Matrix Formalism
  • 7.4. Propagation of Non-Gaussian Beam
  • 7.5. Calculation Formula for Spot Size
  • 7.6. Representation by Diffraction Integral
  • Chapter 8. Basic Optical Waveguide Circuit
  • 8.1. Coupling by Cascade Connection of Optical Waveguides
  • 8.1.1. General Formula for Coupling Efficiency
  • 8.1.2. Misalignment Loss Characteristic by Gaussian Approximation
  • 8.1.3. Conditions for the Low Loss Connection of Optical Waveguides
  • 8.2. Optical Coupling between Parallel Waveguides
  • 8.3. Merging and Branching of Optical Waveguides
  • 8.3.1. Merging and Branching of Multimode Waveguides
  • 8.3.2. Merging and Branching of Single-Mode Waveguides
  • 8.4. Resonators and Effective Index
  • 8.5. Waveguide Bends
  • 8.6. Polarization Characteristics
  • 8.7. Description of the Optical Circuit by Scattering Matrix and Transmission Matrix
  • 8.8. Analysis of an Optical Waveguide, Including Structure Changes in Propagation Axis Direction
  • Appendix A. Fourier Transform Formulas
  • Appendix B. Characteristics of the Delta Function
  • Appendix C. Derivation of Green's Theorem
  • Appendix D. Vector Analysis Formula
  • Appendix E. Infinite Integral of Gaussian Function
  • Appendix F. Cylindrical Functions
  • Appendix G. Hermite-Gaussian Functions
  • Appendix H. Derivation of the Orthogonality of the Eigenmode
  • Appendix I. Lorentz Reciprocity Theorem
  • Appendix J. WKB Method
  • Appendix K. Derivation of the Petermann's Formula for the Optical Fiber Spot Size
  • Appendix L. Derivation of the Coupling Mode Equation
  • Appendix M. General Solution of the Coupled Mode Equation
  • Appendix N. Perturbation Theory
  • Bibliography
  • Index