Computer processing of remotely-sensed images : an introduction /
Saved in:
Author / Creator: | Mather, Paul M. |
---|---|
Imprint: | Chichester ; New York : Wiley, c1987. |
Description: | xiii, 352 p. : ill. ; 24 cm. |
Language: | English |
Subject: | Remote sensing -- Data processing Image processing -- Digital techniques. Remote sensing -- Data processing. Remote-sensing images. |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/870751 |
Table of Contents:
- Preface to the First Edition
- Preface to the Second Edition
- Preface to the Third Edition
- List of Examples
- 1. Remote Sensing: Basic Principles
- 1.1. Introduction
- 1.2. Electromagnetic radiation and its properties
- 1.2.1. Terminology
- 1.2.2. Nature of electromagnetic radiation
- 1.2.3. The electromagnetic spectrum
- 1.2.4. Sources of electromagnetic radiation
- 1.2.5. Interactions with the Earth's atmosphere
- 1.3. Interaction with Earth-surface materials
- 1.3.1. Introduction
- 1.3.2. Spectral reflectance of Earth surface materials
- 1.4. Summary
- 2. Remote Sensing Platforms and Sensors
- 2.1. Introduction
- 2.2. Characteristics of imaging remote sensing instruments
- 2.2.1. Spatial resolution
- 2.2.2. Spectral resolution
- 2.2.3. Radiometric resolution
- 2.3. Optical, near-infrared and thermal imaging sensors
- 2.3.1. Along-Track Scanning Radiometer (ATSR
- 2.3.2. Advanced Very High Resolution Radiometer (AVHRR
- 2.3.3. MODIS MODerate Resolution Imaging Spectrometer
- 2.3.4. Ocean observing instruments
- 2.3.5. IRS-1 LISS
- 2.3.6. Landsat Instruments
- 2.3.7. SPOT sensors
- 2.3.8. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER
- 2.3.9. High-resolution commercial and micro-satellite systems
- 2.4. Microwave imaging sensors
- 2.4.1. ERS SAR
- 2.4.2. RADARSAT
- 2.5. Summary
- 3. Hardware and Software Aspects of Digital Image Processing
- 3.1. Introduction
- 3.2. Properties of digital remote sensing data
- 3.2.1. Digital data
- 3.2.2. Data formats
- 3.2.3. System processing
- 3.3. MIPS software
- 3.3.1. Installing MIPS
- 3.3.2. Using MIPS
- 3.3.3. Summary of MIPS functions
- 3.4. Summary
- 4. Pre-processing of Remotely Sensed Data
- 4.1. Introduction
- 4.2. Cosmetic operations
- 4.2.1. Missing scan lines
- 4.2.2. De-striping methods
- 4.3. Geometric correction and registration
- 4.3.1. Orbital geometry model
- 4.3.2. Transformation based on ground control points
- 4.3.3. Resampling procedures
- 4.3.4. Image registration
- 4.3.5. Other geometric correction methods
- 4.4. Atmospheric correction
- 4.4.1. Background
- 4.4.2. Image-based methods
- 4.4.3. Radiative transfer models
- 4.4.4. Empirical line method
- 4.5. Illumination and view angle effects
- 4.6. Sensor calibration
- 4.7. Terrain effects
- 4.8. Summary
- 5. Image Enhancement Techniques
- 5.1. Introduction
- 5.2. Human visual system
- 5.3. Contrast enhancement
- 5.3.1. Linear contrast stretch
- 5.3.2. Histogram equalisation
- 5.3.3. Gaussian Stretch
- 5.4. Pseudocolour enhancement
- 5.4.1. Density slicing
- 5.4.2. Pseudocolour transform
- 5.5. Summary
- 6. Image Transforms
- 6.1. Introduction
- 6.2. Arithmetic operations
- 6.2.1. Image addition
- 6.2.2. Image subtraction
- 6.2.3. Image multiplication
- 6.2.4. Image division and vegetation Indices
- 6.3. Empirically based image transforms
- 6.3.1. Perpendicular Vegetation Index
- 6.3.2. Tasselled Cap (Kauth-Thomas) transformation
- 6.4. Principal Components Analysis
- 6.4.1. Standard Principal Components Analysis
- 6.4.2. Noise-adjusted Principal Components Analysis
- 6.4.3. Decorrelation stretch
- 6.5. Hue, Saturation and Intensity (HIS) transform
- 6.6. The Discrete Fourier Transform
- 6.6.1. Introduction
- 6.6.2. Two-dimensional DFT
- 6.6.3. Applications of the DFT
- 6.7. The Discrete Wavelet Transform
- 6.7.1. Introduction
- 6.7.2. The one-dimensional Discrete Wavelet Transform
- 6.7.3. The two-dimensional Discrete Wavelet Transform
- 6.8. Summary
- 7. Filtering Techniques
- 7.1. Introduction
- 7.2. Spatial domain low-pass (smoothing) filters
- 7.2.1. Moving average filter
- 7.2.2. Median filter
- 7.2.3. Adaptive filters
- 7.3. Spatial domain high-pass (sharpening) filters
- 7.3.1. Image subtraction method
- 7.3.2. Derivative-based methods
- 7.4. Spatial domain edge detectors
- 7.5. Frequency domain filters
- 7.6. Summary
- 8. Classification
- 8.1. Introduction
- 8.2. Geometrical basis of classification
- 8.3. Unsupervised classification
- 8.3.1. The k-means algorithm
- 8.3.2. ISODATA
- 8.3.3. A modified k-means algorithm
- 8.4. Supervised classification
- 8.4.1. Training samples
- 8.4.2. Statistical classifiers
- 8.4.3. Neural Classifiers
- 8.5. Fuzzy classification and linear spectral unmixing
- 8.5.1. The linear mixture model
- 8.5.2. Fuzzy classifiers
- 8.6. Other approaches to image classification
- 8.7. Incorporation of non-spectral features
- 8.7.1. Texture
- 8.7.2. Use of external data
- 8.8. Contextual information
- 8.9. Feature selection
- 8.10. Classification accuracy
- 8.11. Summary
- 9. Advanced Topics
- 9.1. Introduction
- 9.2. SAR Interferometry
- 9.2.1. Basic principles
- 9.2.2. Interferometric processing
- 9.2.3. Problems in SAR interferometry
- 9.2.4. Applications of SAR interferometry
- 9.3. Imaging spectrometry
- 9.3.1. Introduction
- 9.3.2. Processing imaging spectrometer data
- 9.4. Lidar
- 9.4.1. Introduction
- 9.4.2. Lidar details
- 9.4.3. Lidar applications
- 9.5. Summary
- Appendix A. Using the CD-ROM Image Data Sets
- References
- Index