Principles of helicopter aerodynamics /

Saved in:
Bibliographic Details
Author / Creator:Leishman, J. Gordon.
Edition:1st pbk. ed.
Imprint:Cambridge ; New York : Cambridge University Press, 2002.
Description:xxxix, 496 p. : ill. ; 26 cm.
Language:English
Series:Cambridge aerospace series ; 12
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7794871
Hidden Bibliographic Details
ISBN:0521523966
9780521523967
Notes:Originally published: 2000.
Includes bibliographical references and and index.
Table of Contents:
  • Preface to the Second Edition
  • Preface to the First Edition
  • Acknowledgments
  • List of Main Symbols
  • 1. Introduction: A History of Helicopter Flight
  • 1.1. Rising Vertically
  • 1.2. Producing Thrust
  • 1.3. Key Technical Problems in Attaining Vertical Flight
  • 1.4. Early Thinking
  • 1.5. The Hoppers
  • 1.6. The First Hoverers
  • 1.7. Not Quite a Helicopter
  • 1.8. Engines: A Key Enabling Technology
  • 1.9. On the Verge of Success
  • 1.10. The First Successes
  • 1.11. Toward Mass Production
  • 1.12. Maturing Technology
  • 1.13. Compounds, Tilt-Wings, and Tilt-Rotors
  • 1.14. Chapter Review
  • 1.15. Questions
  • Bibliography
  • 2. Fundamentals of Rotor Aerodynamics
  • 2.1. Introduction
  • 2.2. Momentum Theory Analysis in Hovering Flight
  • 2.2.1. Flow Near a Hovering Rotor
  • 2.2.2. Conservation Laws of Aerodynamics
  • 2.2.3. Application to a Hovering Rotor
  • 2.3. Disk Loading and Power Loading
  • 2.4. Induced Inflow Ratio
  • 2.5. Thrust and Power Coefficients
  • 2.6. Comparison of Theory with Measured Rotor Performance
  • 2.7. Nonideal Effects on Rotor Performance
  • 2.8. Figure of Merit
  • 2.9. Estimating Nonideal Effects from Rotor Measurements
  • 2.10. Induced Tip Loss
  • 2.11. Rotor Solidity and Blade Loading Coefficient
  • 2.12. Power Loading
  • 2.13. Momentum Analysis in Axial Climb and Descent
  • 2.13.1. Axial Climb
  • 2.13.2. Axial Descent
  • 2.13.3. Region between Hover and Windmill State
  • 2.13.4. Power Required in Axial Climbing and Descending Flight
  • 2.13.5. Four Working States of the Rotor in Axial Flight
  • 2.13.6. Vortex Ring State
  • 2.13.7. Autorotation
  • 2.14. Momentum Analysis in Forward Flight
  • 2.14.1. Induced Velocity in Forward Flight
  • 2.14.2. Special Case, [alpha] = 0
  • 2.14.3. Numerical Solution to Inflow Equation
  • 2.14.4. General Form of the Inflow Equation
  • 2.14.5. Validity of the Inflow Equation
  • 2.14.6. Rotor Power Requirements in Forward Flight
  • 2.15. Other Applications of the Momentum Theory
  • 2.15.1. Coaxial Rotor Systems
  • 2.15.2. Tandem Rotor Systems
  • 2.16. Chapter Review
  • 2.17. Questions
  • Bibliography
  • 3. Blade Element Analysis
  • 3.1. Introduction
  • 3.2. Blade Element Analysis in Hover and Axial Flight
  • 3.2.1. Integrated Rotor Thrust and Power
  • 3.2.2. Thrust Approximations
  • 3.2.3. Torque-Power Approximations
  • 3.2.4. Tip-Loss Factor
  • 3.3. Blade Element Momentum Theory (BEMT)
  • 3.3.1. Assumed Radial Distributions of Inflow on the Blades
  • 3.3.2. Radial Inflow Equation
  • 3.3.3. Ideal Twist
  • 3.3.4. BEMT: Numerical Solution
  • 3.3.5. Distributions of Inflow and Airloads
  • 3.3.6. Effects of Swirl Velocity
  • 3.3.7. The Optimum Hovering Rotor
  • 3.3.8. Circulation Theory of Lift
  • 3.3.9. Power Estimates for the Rotor
  • 3.3.10. Prandtl's Tip-Loss Function
  • 3.3.11. Blade Design and Figure of Merit
  • 3.3.12. BEMT in Climbing Flight
  • 3.3.13. Further Comparisons of BEMT with Experiment
  • 3.3.14. Compressibility Corrections to Rotor Performance
  • 3.4. Equivalent Blade Chords and Weighted Solidity
  • 3.4.1. Mean Wing Chords
  • 3.4.2. Thrust Weighted Solidity
  • 3.4.3. Power-Torque Weighted Solidity
  • 3.4.4. Weighted Solidity of the Optimum Rotor
  • 3.4.5. Weighted Solidities of Tapered Blades
  • 3.4.6. Mean Lift Coefficient
  • 3.5. Blade Element Analysis in Forward Flight
  • 3.5.1. Determining Blade Forces
  • 3.5.2. Definition of the Approximate Induced Velocity Field
  • 3.6. Chapter Review
  • 3.7. Questions
  • Bibliography
  • 4. Rotating Blade Motion
  • 4.1. Introduction
  • 4.2. Types of Rotors
  • 4.3. Equilibrium about the Flapping Hinge
  • 4.4. Equilibrium about the Lead-Lag Hinge
  • 4.5. Equation of Motion for a Flapping Blade
  • 4.6. Physical Description of Blade Flapping
  • 4.6.1. Coning Angle
  • 4.6.2. Longitudinal Flapping Angle
  • 4.6.3. Lateral Flapping Angle
  • 4.6.4. Higher Harmonics of Blade Flapping
  • 4.7. Dynamics of Blade Flapping with a Hinge Offset
  • 4.8. Blade Feathering and the Swashplate
  • 4.9. Review of Rotor Reference Axes
  • 4.10. Dynamics of a Lagging Blade with a Hinge Offset
  • 4.11. Coupled Flap-Lag Motion
  • 4.12. Coupled Pitch-Flap Motion
  • 4.13. Other Types of Rotors
  • 4.13.1. Teetering Rotor
  • 4.13.2. Semi-Rigid or Hingeless Rotors
  • 4.14. Introduction to Rotor Trim
  • 4.14.1. Equations for Free-Flight Trim
  • 4.14.2. Typical Trim Solution Procedure for Level Flight
  • 4.15. Chapter Review
  • 4.16. Questions
  • Bibliography
  • 5. Helicopter Performance
  • 5.1. Introduction
  • 5.2. The International Standard Atmosphere
  • 5.3. Hovering and Axial Climb Performance
  • 5.4. Forward Flight Performance
  • 5.4.1. Induced Power
  • 5.4.2. Blade Profile Power
  • 5.4.3. Compressibility Losses and Tip Relief
  • 5.4.4. Reverse Flow
  • 5.4.5. Parasitic Power
  • 5.4.6. Climb Power
  • 5.4.7. Tail Rotor Power
  • 5.4.8. Total Power
  • 5.5. Performance Analysis
  • 5.5.1. Effect of Gross Weight
  • 5.5.2. Effect of Density Altitude
  • 5.5.3. Life-to-Drag Ratios
  • 5.5.4. Climb Performance
  • 5.5.5. Engine Fuel Consumption
  • 5.5.6. Speed for Minimum Power
  • 5.5.7. Speed for Maximum Range
  • 5.5.8. Range-Payload and Endurance-Payload Relations
  • 5.5.9. Maximum Altitude or Ceiling
  • 5.5.10. Factors Affecting Maximum Attainable Forward Speed
  • 5.5.11. Performance of Coaxial and Tandem Dual Rotor Systems
  • 5.6. Autorotational Performance
  • 5.6.1. Autorotation in Forward Flight
  • 5.6.2. Height-Velocity (H-V) Curve
  • 5.6.3. Autorotation Index
  • 5.7. Vortex Ring State (VRS)
  • 5.7.1. Quantification of VRS Effects
  • 5.7.2. Implications of VRS on Flight Boundary
  • 5.8. Ground Effect
  • 5.8.1. Hovering Flight Near the Ground
  • 5.8.2. Forward Flight Near the Ground
  • 5.9. Performance in Maneuvering Flight
  • 5.9.1. Steady Maneuvers
  • 5.9.2. Transient Maneuvers
  • 5.10. Factors Influencing Performance Degradation
  • 5.11. Chapter Review
  • 5.12. Questions
  • Bibliography
  • 6. Aerodynamic Design of Helicopters
  • 6.1. Introduction
  • 6.2. Overall Design Requirements
  • 6.3. Conceptual and Preliminary Design Processes
  • 6.4. Design of the Main Rotor
  • 6.4.1. Rotor Diameter
  • 6.4.2. Tip Speed
  • 6.4.3. Rotor Solidity
  • 6.4.4. Number of Blades
  • 6.4.5. Blade Twist
  • 6.4.6. Blade Planform and Tip Shape
  • 6.4.7. Airfoil Sections
  • 6.5. Case Study: The BERP Rotor
  • 6.6. Fuselage Aerodynamic Design Issues
  • 6.6.1. Fuselage Drag
  • 6.6.2. Vertical Drag and Download Penalty
  • 6.6.3. Vertical Drag Recovery
  • 6.6.4. Fuselage Side-Force
  • 6.7. Empennage Design
  • 6.7.1. Horizontal Stabilizer
  • 6.7.2. Vertical Stabilizer
  • 6.8. Role of Wind Tunnels in Aerodynamic Design
  • 6.9. Design of Tail Rotors
  • 6.9.1. Physical Size
  • 6.9.2. Thrust Requirements
  • 6.9.3. Precessional Stall Issues
  • 6.9.4. "Pushers" versus "Tractors"
  • 6.9.5. Design Requirements
  • 6.9.6. Representative Tail Rotor Designs
  • 6.10. Other Anti-Torque Devices
  • 6.10.1. Fan-in-Fin
  • 6.10.2. NOTAR Design
  • 6.11. High-Speed Rotorcraft
  • 6.11.1. Compound Helicopters
  • 6.11.2. Tilt-Rotors
  • 6.11.3. Other High-Speed Concepts
  • 6.12. Smart Rotor Systems
  • 6.13. Human-Powered Helicopter
  • 6.14. Hovering Micro Air Vehicles
  • 6.15. Chapter Review
  • 6.16. Questions
  • Bibliography
  • 7. Aerodynamics of Rotor Airfoils
  • 7.1. Introduction
  • 7.2. Helicopter Rotor Airfoil Requirements
  • 7.3. Reynolds Number and Mach Number Effects
  • 7.3.1. Reynolds Number
  • 7.3.2. Concept of the Boundary Layer
  • 7.3.3. Mach Number
  • 7.3.4. Model Rotor Similarity Parameters
  • 7.4. Airfoil Shape Definition
  • 7.5. Airfoil Pressure Distributions
  • 7.5.1. Pressure Coefficient
  • 7.5.2. Critical Pressure Coefficient
  • 7.5.3. Synthesis of Chordwise Pressure
  • 7.5.4. Measurements of Chordwise Pressure
  • 7.6. Aerodynamics of a Representative Airfoil Section
  • 7.6.1. Integration of Distributed Forces
  • 7.6.2. Pressure Integration
  • 7.6.3. Representative Force and Moment Results
  • 7.7. Pitching Moment and Related Issues
  • 7.7.1. Aerodynamic Center
  • 7.7.2. Center of Pressure
  • 7.7.3. Effect of Airfoil Shape on Pitching Moment
  • 7.7.4. Use of Trailing Edge Tabs
  • 7.7.5. Reflexed Airfoils
  • 7.8. Drag
  • 7.9. Maximum Lift and Stall Characteristics
  • 7.9.1. Effects of Reynolds Number
  • 7.9.2. Effects of Mach Number
  • 7.10. Advanced Rotor Airfoil Design
  • 7.11. Representing Static Airfoil Characteristics
  • 7.11.1. Linear Aerodynamic Models
  • 7.11.2. Nonlinear Aerodynamic Models
  • 7.11.3. Table Look-Up
  • 7.11.4. Direct Curve Fitting
  • 7.11.5. Beddoes Method
  • 7.11.6. High Angle of Attack Range
  • 7.12. Circulation Controlled Airfoils
  • 7.13. Very Low Reynolds Number Airfoil Characteristics
  • 7.14. Effects of Damage on Airfoil Performance
  • 7.15. Chapter Review
  • 7.16. Questions
  • Bibliography
  • 8. Unsteady Airfoil Behavior
  • 8.1. Introduction
  • 8.2. Sources of Unsteady Aerodynamic Loading
  • 8.3. Concepts of the Blade Wake
  • 8.4. Reduced Frequency and Reduced Time
  • 8.5. Unsteady Attached Flow
  • 8.6. Principles of Quasi-Steady Thin-Airfoil Theory
  • 8.7. Theodorsen's Theory
  • 8.7.1. Pure Angle of Attack Oscillations
  • 8.7.2. Pure Plunging Oscillations
  • 8.7.3. Pitching Oscillations
  • 8.8. The Returning Wake: Loewy's Problem
  • 8.9. Sinusoidal Gust: Sears's Problem
  • 8.10. Indicial Response: Wagner's Problem
  • 8.11. Sharp-Edged Gust: Kussner's Problem
  • 8.12. Traveling Sharp-Edged Gust: Miles's Problem
  • 8.13. Time-Varying Incident Velocity
  • 8.14. General Application of the Indicial Response Method
  • 8.14.1. Recurrence Solution to the Duhamel Integral
  • 8.14.2. State-Space Solution for Arbitrary Motion
  • 8.15. Indicial Method for Subsonic Compressible Flow
  • 8.15.1. Approximations to the Indicial Response
  • 8.15.2. Indicial Lift from Angle of Attack
  • 8.15.3. Indicial Lift from Pitch Rate
  • 8.15.4. Determination of Indicial Function Coefficients
  • 8.15.5. Indicial Pitching Moment from Angle of Attack
  • 8.15.6. Indicial Pitching Moment from Pitch Rate
  • 8.15.7. Unsteady Axial Force and Airfoil Drag
  • 8.15.8. State-Space Aerodynamic Model for Compressible Flow
  • 8.15.9. Comparison with Experiment
  • 8.16. Nonuniform Vertical Velocity Fields
  • 8.16.1. Exact Subsonic Linear Theory
  • 8.16.2. Approximations to the Sharp-Edged Gust Functions
  • 8.16.3. Response to an Arbitrary Vertical Gust
  • 8.16.4. Blade-Vortex Interaction (BVI) Problem
  • 8.16.5. Convecting Vertical Gusts in Subsonic Flow
  • 8.17. Time-Varying Incident Mach Number
  • 8.18. Unsteady Aerodynamics of Flaps
  • 8.18.1. Incompressible Flow Theory
  • 8.18.2. Subsonic Flow Theory
  • 8.18.3. Comparison with Measurements
  • 8.19. Principles of Noise Produced by Unsteady Forces
  • 8.19.1. Retarded Time and Source Time
  • 8.19.2. Wave Tracing
  • 8.19.3. Compactness
  • 8.19.4. Trace or Phase Mach Number
  • 8.19.5. Ffowcs-Williams-Hawkins Equation
  • 8.19.6. BVI Acoustic Model Problem
  • 8.19.7. Comparison of Aeroacoustic Methods
  • 8.19.8. Methods of Rotor Noise Reduction
  • 8.20. Chapter Review
  • 8.21. Questions
  • Bibliography
  • 9. Dynamic Stall
  • 9.1. Introduction
  • 9.2. Flow Morphology of Dynamic Stall
  • 9.3. Dynamic Stall in the Rotor Environment
  • 9.4. Effects of Forcing Conditions on Dynamic Stall
  • 9.5. Modeling of Dynamic Stall
  • 9.5.1. Semi-Empirical Models of Dynamic Stall
  • 9.5.2. Capabilities of Dynamic Stall Modeling
  • 9.5.3. Future Modeling Goals with Semi-Empirical Models
  • 9.6. Torsional Damping
  • 9.7. Effects of Sweep Angle on Dynamic Stall
  • 9.8. Effect of Airfoil Shape on Dynamic Stall
  • 9.9. Three-Dimensional Effects on Dynamic Stall
  • 9.10. Time-Varying Velocity Effects on Dynamic Stall
  • 9.11. Prediction of In-Flight Airloads
  • 9.12. Stall Control
  • 9.13. Chapter Review
  • 9.14. Questions
  • Bibliography
  • 10. Rotor Wakes and Blade Tip Vortices
  • 10.1. Introduction
  • 10.2. Flow Visualization Techniques
  • 10.2.1. Natural Condensation Effects
  • 10.2.2. Smoke Flow Visualization
  • 10.2.3. Density Gradient Methods
  • 10.3. Characteristics of the Rotor Wake in Hover
  • 10.3.1. General Features
  • 10.3.2. Wake Geometry in Hover
  • 10.4. Characteristics of the Rotor Wake in Forward Flight
  • 10.4.1. Wake Boundaries
  • 10.4.2. Blade-Vortex Interactions (BVIs)
  • 10.5. Other Characteristics of Rotor Wakes
  • 10.5.1. Periodicity versus Aperiodicity
  • 10.5.2. Vortex Perturbations and Instabilities
  • 10.6. Detailed Structure of the Tip Vortices
  • 10.6.1. Velocity Field
  • 10.6.2. Models for the Tip Vortex
  • 10.6.3. Vorticity Diffusion Effects and Vortex Core Growth
  • 10.6.4. Correlation of Rotor Tip Vortex Data
  • 10.6.5. Flow Rotation Effects on Turbulence Inside Vortices
  • 10.7. Vortex Models of the Rotor Wake
  • 10.7.1. Biot-Savart Law
  • 10.7.2. Vortex Segmentation
  • 10.7.3. Governing Equations for the Convecting Vortex Wake
  • 10.7.4. Prescribed Wake Models for Hovering Flight
  • 10.7.5. Prescribed Vortex Wake Models for Forward Flight
  • 10.7.6. Free-Vortex Wake Analyses
  • 10.8. Aperiodic Wake Developments
  • 10.8.1. Wake Stability Analysis
  • 10.8.2. Flow Visualization of Transient Wake Problems
  • 10.8.3. Dynamic Inflow
  • 10.8.4. Time-Marching Free-Vortex Wakes
  • 10.8.5. Simulation of Carpenter & Friedovich Problem
  • 10.9. General Dynamic Inflow Models
  • 10.10. Descending Flight and the Vortex Ring State
  • 10.11. Wake Developments in Maneuvering Flight
  • 10.12. Chapter Review
  • 10.13. Questions
  • Bibliography
  • 11. Rotor-Airframe Interactional Aerodynamics
  • 11.1. Introduction
  • 11.2. Rotor-Fuselage Interactions
  • 11.2.1. Effects of the Fuselage on Rotor Performance
  • 11.2.2. Time-Averaged Effects on the Airframe
  • 11.2.3. Unsteady Rotor-Fuselage Interactions
  • 11.2.4. Fuselage Side-Forces
  • 11.2.5. Modeling of Rotor-Fuselage Interactions
  • 11.3. Rotor-Empennage Interactions
  • 11.3.1. Airloads on the Horizontal Tail
  • 11.3.2. Modeling of Rotor-Empennage Interactions
  • 11.4. Rotor-Tail Rotor Interactions
  • 11.5. Chapter Review
  • 11.6. Questions
  • Bibliography
  • 12. Autogiros and Gyroplanes
  • 12.1. Introduction
  • 12.2. The Curious Phenomenon of Autorotation
  • 12.3. Review of Autorotational Physics
  • 12.4. Rolling Rotors: The Dilemma of Asymmetric Lift
  • 12.5. Innovation of the Flapping and Lagging Hinges
  • 12.6. Prerotating the Rotor
  • 12.7. Autogiro Theory Meets Practice
  • 12.8. Vertical Flight Performance of the Autogiro
  • 12.9. Forward Flight Performance of the Autogiro
  • 12.10. Comparison of Autogiro Performance with the Helicopter
  • 12.11. Airfoils for Autogiros
  • 12.12. NACA Research on Autogiros
  • 12.13. Giving Better Control: Orientable Rotors
  • 12.14. Improving Performance: Jump and Towering Takeoffs
  • 12.15. Ground and Air Resonance
  • 12.16. Helicopters Eclipse Autogiros
  • 12.17. Renaissance of the Autogiro?
  • 12.18. Chapter Review
  • 12.19. Questions
  • Bibliography
  • 13. Aerodynamics of Wind Turbines
  • 13.1. Introduction
  • 13.2. History of Wind Turbine Development
  • 13.3. Power in the Wind
  • 13.4. Momentum Theory Analysis for a Wind Turbine
  • 13.4.1. Power and Thrust Coefficients for a Wind Turbine
  • 13.4.2. Theoretical Maximum Efficiency
  • 13.5. Representative Power Curve for a Wind Turbine
  • 13.6. Elementary Wind Models
  • 13.7. Blade Element Model for the Wind Turbine
  • 13.8. Blade Element Momentum Theory for a Wind Turbine
  • 13.8.1. Effect of Number of Blades
  • 13.8.2. Effect of Viscous Drag
  • 13.8.3. Tip-Loss Effects
  • 13.8.4. Tip Losses and Other Viscous Losses
  • 13.8.5. Effects of Stall
  • 13.9. Airfoils for Wind Turbines
  • 13.10. Yawed Flow Operation
  • 13.11. Vortex Wake Considerations
  • 13.12. Unsteady Aerodynamic Effects on Wind Turbines
  • 13.12.1. Tower Shadow
  • 13.12.2. Dynamic Stall and Stall Delay
  • 13.13. Advanced Aerodynamic Modeling Requirements
  • 13.14. Chapter Review
  • 13.15. Questions
  • Bibliography
  • 14. Computational Methods for Helicopter Aerodynamics
  • 14.1. Introduction
  • 14.2. Fundamental Governing Equations of Aerodynamics
  • 14.2.1. Navier-Stokes Equations
  • 14.2.2. Euler Equations
  • 14.3. Vorticity Transport Equations
  • 14.4. Vortex Methods
  • 14.5. Boundary Layer Equations
  • 14.6. Potential Equations
  • 14.7. Surface Singularity Methods
  • 14.8. Thin Airfoil Theory
  • 14.9. Lifting-Line Blade Model
  • 14.10. Applications of Advanced Computational Methods
  • 14.10.1. Unsteady Airfoil Performance
  • 14.10.2. Tip Vortex Formation
  • 14.10.3. CFD Modeling of the Rotor Wake
  • 14.10.4. Airframe Flows
  • 14.10.5. Vibrations and Acoustics
  • 14.10.6. Ground Effect
  • 14.10.7. Vortex Ring State
  • 14.11. Comprehensive Rotor Analyses
  • 14.12. Chapter Review
  • 14.13. Questions
  • Bibliography
  • Appendix
  • Index