Markov chains and stochastic stability /

Saved in:
Bibliographic Details
Author / Creator:Meyn, S. P. (Sean P.)
Edition:2nd ed.
Imprint:Cambridge ; New York : Cambridge University Press, 2009.
Description:xxviii, 594 p. : ill. ; 25 cm.
Language:English
Series:Communications and control engineering series
Communications and control engineering series.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7705976
Hidden Bibliographic Details
Other authors / contributors:Tweedie, R. L. (Richard L.)
ISBN:9780521731829 (pbk.)
0521731828 (pbk.)
Notes:Includes bibliographical references (p. 567-586) and index.
Table of Contents:
  • List of figures
  • Prologue to the Second edition, Peter W. Glynn
  • Preface to the second edition, Sean Meyn
  • Preface to the first edition
  • I. Communication and Regeneration
  • 1. Heuristics
  • 1.1. A range of Markovian environments
  • 1.2. Basic models in practice
  • 1.3. Stochastic stability for Markov models
  • 1.4. Commentary
  • 2. Markov models
  • 2.1. Markov models in time series
  • 2.2. Nonlinear state space models
  • 2.3. Models in control and systems theory
  • 2.4. Markov models with regeneration times
  • 2.5. Commentary
  • 3. Transition probabilities
  • 3.1. Defining a Markovian Process
  • 3.2. Foundations on a countable space
  • 3.3. Specific transition matrices
  • 3.4. Foundations for general state space chains
  • 3.5. Building transition kernels for specific models
  • 3.6. Commentary
  • 4. Irreducibility
  • 4.1. Communication and irreducibility: Countable spaces
  • 4.2. ¿-Irreducibility
  • 4.3. ¿-Irreducibility for random walk models
  • 4.4. ¿-Irreducible linear models
  • 4.5. Commentary
  • 5. Pseudo-atoms
  • 5.1. Splitting ¿-irreducible chains
  • 5.2. Small sets
  • 5.3. Small sets for specific models
  • 5.4. Cyclic behavior
  • 5.5. Petite sets and sampled chains
  • 5.6. Commentary
  • 6. Topology and continuity
  • 6.1. Feller properties and forms of stability
  • 6.2. T-chains
  • 6.3. Continuous components for specific models
  • 6.4. e-Chains
  • 6.5. Commentary
  • 7. The nonlinear state space model
  • 7.1. Forward accessibility and continuous components
  • 7.2. Minimal sets and irreducibility
  • 7.3. Periodicity for nonlinear state space models
  • 7.4. Forward accessible examples
  • 7.5. Equicontinuity and the nonlinear state space model
  • 7.6. Commentary
  • II. Stability Structures
  • 8. Transience and recurrence
  • 8.1. Classifying chains on countable spaces
  • 8.2. Classifying ¿-irreducible chains
  • 8.3. Recurrence and transience relationships
  • 8.4. Classification using drift criteria
  • 8.5. Classifying random walk on R+
  • 8.6. Commentary
  • 9. Harris and topological recurrence
  • 9.1. Harris recurrence
  • 9.2. Non-evanescent and recurrent chains
  • 9.3. Topologically recurrent and transient states
  • 9.4. Criteria for stability on a topological space
  • 9.5. Stochastic comparison and increment analysis
  • 9.6. Commentary
  • 10. The existence of ¿
  • 10.1. Stationarity and invariance
  • 10.2. The existence of ¿: chains with atoms
  • 10.3. Invariant measures for countable space models
  • 10.4. The existence of ¿: ¿-irreducible chains
  • 10.5. Invariant measures for general models
  • 10.6. Commentary
  • 11. Drift and regularity
  • 11.1. Regular chains
  • 11.2. Drift, hitting times and deterministic models
  • 11.3. Drift, criteria for regularity
  • 11.4. Using the regularity criteria
  • 11.5. Evaluating non-positivity
  • 11.6. Commentary
  • 12. Invariance and tightness
  • 12.1. Chains bounded in probability
  • 12.2. Generalized sampling and invariant measures
  • 12.3. The existence of a ¿-finite invariant measure
  • 12.4. Invariant measures for e-chains
  • 12.5. Establishing boundedness in probability
  • 12.6. Commentary
  • III. Convergence
  • 13. Ergodicity
  • 13.1. Ergodic chains on countable spaces
  • 13.2. Renewal and regeneration
  • 13.3. Ergodicity of positive Harris chains
  • 13.4. Sums of transition probabilities
  • 13.5. Commentary
  • 14. f-Ergodicity and f-regularity
  • 14.1. f-Properties: chains with atoms
  • 14.2. f-Regularity and drift
  • 14.3. f-Ergodicity for general chains
  • 14.4. f-Ergodicity of specific models
  • 14.5. A key renewal theorem
  • 14.6. Commentary
  • 15. Geometric ergodicity
  • 15.1. Geometric properties: chains with atoms
  • 15.2. Kendall sets and drift criteria
  • 15.3. f-Geometric regularity of ¿ and its skeleton
  • 15.4. f-Geometric ergodicity for general chains
  • 15.5. Simple random walk and linear models
  • 15.6. Commentary
  • 16. V-Uniform ergodicity
  • 16.1. Operator norm convergence
  • 16.2. Uniform ergodicity
  • 16.3. Geometric ergodicity and increment analysis
  • 16.4. Models from queueing theory
  • 16.5. Autoregressive and state space models
  • 16.6. Commentary
  • 17. Sample paths and limit theorems
  • 17.1. Invariant ¿-fields and the LLN
  • 17.2. Ergodic theorems for chains possessing an atom
  • 17.3. General Harris chains
  • 17.4. The functional CLT
  • 17.5. Criteria for the CLT and the LIL
  • 17.6. Applications
  • 17.7. Commentary
  • 18. Positivity
  • 18.1. Null recurrent chains
  • 18.2. Characterizing positivity using Pn
  • 18.3. Positivity and T-chains
  • 18.4. Positivity and e-chains
  • 18.5. The LLN for e-chains
  • 18.6. Commentary
  • 19. Generalized classification criteria
  • 19.1. State-dependent drifts
  • 19.2. History-dependent drift criteria
  • 19.3. Mixed drift conditions
  • 19.4. Commentary
  • 20. Epilogue to the second edition
  • 20.1. Geometric ergodicity and spectral theory
  • 20.2. Simulation and MCMC
  • 20.3. Continuous time models
  • IV. Appendices
  • A. Mud maps
  • A.1. Recurrence versus transience
  • A.2. Positivity versus nullity
  • A.3. Convergence properties
  • B. Testing for stability
  • B.1. Glossary of drift conditions
  • B.2. The Scalar SETAR model: a complete classification
  • C. Glossary of models assumptions
  • C.1. Regenerative models
  • C.2. State space models
  • D. Some mathematical background
  • D.1. Some measure theory
  • D.2. Some probability theory
  • D.3. Some topology
  • D.4. Some real analysis
  • D.5. Convergence concepts for measures
  • D.6. Some martingale theory
  • D.7. Some results on sequences and numbers
  • Bibliography
  • Indexes
  • General index
  • Symbols