Electrochemistry for materials science /

Saved in:
Bibliographic Details
Author / Creator:Plieth, W. (Waldfried)
Edition:1st ed.
Imprint:Amsterdam ; Boston : Elsevier, 2008.
Description:xxi, 410 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6686378
Hidden Bibliographic Details
ISBN:9780444527929 (hbk.)
0444527923 (hbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • List of Symbols
  • Preface
  • 1. Electrolytes
  • 1.1. Liquid Electrolyte Solutions
  • 1.2. Ionic Melts
  • 1.2.1. Alkali halide melts
  • 1.2.2. Glass forming molten salts
  • 1.2.3. Ionic liquids
  • 1.3. Ionic Conductance in Polymers
  • 1.3.1. Polymer electrolytes
  • 1.3.2. Gel polymer electrolytes
  • 1.3.3. Ion exchanging polymer electrolytes
  • 1.4. Ionic Conductance in Solids
  • 1.4.1. Crystal defects
  • 1.4.2. Intrinsic disorder
  • 1.4.3. Extrinsic disorder
  • 1.4.4. Disorder in sub-lattices
  • 1.4.5. Transport by defects
  • 1.4.6. Ion conducting glasses
  • 1.4.7. Mixed ionic and electronic conductance
  • 2. Structure and Bonding
  • 2.1. Structure Factors
  • 2.2. Closed Packed Structures of Metals
  • 2.3. Alloys with Closed Packed Structure
  • 2.4. Hume-Rothery Rules for Formation of Solid Solutions
  • 2.5. Body Centered Cubic Structure
  • 2.6. Hume-Rothery Phases
  • 2.7. Ionic Structures
  • 2.8. Coordination Polyhedrons of Molecules
  • 2.9. The Band Model of Electrons in Solids
  • 2.9.1. Free electrons in a metal
  • 2.9.2. Orbitals in solids
  • 2.9.3. Density of states (DOS)
  • 2.9.4. Filling up with electrons; Fermi energy
  • 2.9.5. Crystal orbital overlap population: the formation of bonds
  • 2.9.6. Extension to more dimensions
  • 2.9.7. Band structure of d-metals
  • 2.9.8. Semiconductors: example TiO[subscript 2]
  • 2.9.9. Peierls distortion
  • 2.9.10. Energy bands in electrolytes
  • 2.10. Cohesion in Solids
  • 2.10.1. Lattice enthalpy
  • 2.10.2. Sublimation enthalpy
  • 2.10.3. Bond energies of metals
  • 2.10.4. Bond energies of alloys
  • 3. Electrode Potentials
  • 3.1. Pure Metals
  • 3.1.1. Equilibrium between a metal phase and an electrolyte phase
  • 3.1.2. Standard electrode potentials
  • 3.1.3. Standard electrode potentials of metal complexes
  • 3.2. Alloys
  • 3.2.1. Partial molar Gibbs energies
  • 3.2.2. Electrochemical measurements of partial molar functions
  • 3.2.3. Ag[subscript x]Au[subscript y]-example of a solid solution
  • 3.2.4. Partial molar functions of component B
  • 3.2.5. From partial molar functions to integral functions
  • 3.3. Intermetallic Phases and Compounds
  • 3.3.1. Potential versus mole fraction diagrams
  • 3.3.2. Coulometric titration
  • 3.3.3. Coulometric titration: the system LiAl
  • 3.3.4. Intermetallic compounds: the system LiSb
  • 3.3.5. Measurements at room temperatures: CuZn
  • 4. Ad-Atoms and Underpotential Deposition
  • 4.1. The Thermodynamic Description of the Interphase
  • 4.1.1. The electrochemical double layer
  • 4.1.2. Ideally polarizable electrodes
  • 4.1.3. Electrocapillary curves
  • 4.1.4. Adsorption isotherms
  • 4.1.5. Reversible electrodes
  • 4.1.6. Partial charge and electrosorption valency
  • 4.1.7. Thermodynamics of solid electrolyte interfaces
  • 4.2. Principal Methods for the Investigation of the Electrochemical Double Layer
  • 4.2.1. Measurement of capacitance
  • 4.2.2. Cyclic voltammetry and chronoamperometry
  • 4.2.3. Determination of the adsorbed mass
  • 4.2.4. Scanning tunneling microscopy and related methods
  • 4.3. Ad-Atoms
  • 4.3.1. Adsorption and desorption of ad-atoms
  • 4.3.2. Equilibrium ad-atom concentration
  • 4.3.3. Surface diffusion of ad-atoms
  • 4.4. Underpotential Deposition
  • 4.4.1. Lead on silver
  • 4.4.2. Copper on Au
  • 4.4.3. Underpotential deposition as two-dimensional phase formation
  • 4.4.4. Multiple steps of UPD film formation
  • 5. Mass Transport
  • 5.1. Stationary Diffusion
  • 5.2. Non-Stationary Diffusion
  • 5.2.1. Chronopotentiometry
  • 5.2.2. Chronoamperometry, chronocoulometry
  • 5.2.3. Warburg impedance
  • 5.2.4. Cyclic voltammetry
  • 5.2.5. Microelectrodes
  • 5.3. Diffusion in Solid Phases
  • 5.3.1. Potentiostatic method
  • 5.3.2. Galvanostatic method
  • 5.4. Methods to Control Diffusion Overpotential
  • 5.4.1. Rotating-disc electrode
  • 5.4.2. Rotating ring-disc electrodes
  • 5.4.3. Rotating-cylinder electrodes
  • 6. Charge Transfer
  • 6.1. Electron Transfer
  • 6.1.1. Butler-Volmer equation
  • 6.1.2. Tafel lines
  • 6.1.3. Charge transfer resistance
  • 6.1.4. Theories of electron transfer
  • 6.2. Electrochemical Reaction Orders
  • 6.2.1. Determination of electrochemical reaction orders from Tafel lines
  • 6.2.2. Determination of electrochemical reaction orders from the charge transfer resistance
  • 6.3. Ion Transfer
  • 6.4. Charge Transfer and Mass Transport
  • 6.4.1. Elimination of diffusion overpotential with a rotating disc electrode
  • 6.4.2. Elimination of diffusion contribution to the overpotential in chronoamperometry and chronopotentiometry
  • 6.4.3. Elimination of diffusion contributions to the overpotential by impedance spectroscopy
  • 7. Nucleation and Growth of Metals
  • 7.1. Nucleation
  • 7.1.1. Three-dimensional nucleation
  • 7.1.2. Two-dimensional nucleation
  • 7.1.3. Rate of nucleation
  • 7.1.4. Instantaneous and progressive nucleation
  • 7.2. Intermediate States of Electrodeposition
  • 7.2.1. Crystallization overpotential
  • 7.3. Surface Dynamics
  • 7.3.1. Residence time in kink site positions
  • 7.3.2. Calculation of the residence time
  • 7.4. Density of Kink Site Positions
  • 7.4.1. Equilibrium conditions
  • 7.4.2. Deposition conditions
  • 7.5. Experimental Investigations of Electrodeposition
  • 7.5.1. Electrodeposition on amalgam electrodes
  • 7.5.2. Investigations on solid electrodes
  • 7.5.3. Applications of electrodeposition from aqueous solvents
  • 7.5.4. Parallel reactions
  • 7.6. Deposition From Non-Aqueous Solvents
  • 7.6.1. Aluminum deposition from a molten salt
  • 7.6.2. Aluminum deposition from an organic electrolyte
  • 7.6.3. Aluminum deposition from ionic liquids
  • 7.7. Additives
  • 7.7.1. Adsorption, the hard-soft concept
  • 7.7.2. Influence of additives on deposition at different crystallographic faces
  • 7.7.3. Anodic stripping to study additive behavior
  • 7.8. Optical Spectroscopy to Study Metal Deposition
  • 7.8.1. Raman spectroscopy on silver in cyanide electrolytes
  • 7.8.2. Raman spectroscopy of organic additives
  • 8. Deposition of Alloys
  • 8.1. Deposition Potential and Equilibrium Potential
  • 8.2. Alloy Nucleation and Growth: The Partial Current Concept
  • 8.3. Brenner's Alloy Classification
  • 8.4. Mixed Potential Theory
  • 8.5. Surface Selectivity in Alloy Deposition
  • 8.5.1. Kink site positions of alloys
  • 8.5.2. Rate of separation and residence times
  • 8.5.3. Residence time and structure of alloys
  • 8.6. Markov Chain Theory; Definition of the Probability Matrix
  • 8.6.1. Equilibrium of the crystallization process
  • 8.6.2. Rate controlled processes
  • 8.6.3. Determination of selectivity constants
  • 8.6.4. Alloy characterization by selectivity constants
  • 8.6.5. Selectivity constants and residence times in kink site positions
  • 8.7. Experimental Examples
  • 8.7.1. The cobalt-iron alloy system
  • 8.7.2. Cobalt-nickel
  • 8.7.3. Iron-nickel
  • 8.7.4. Induced electrodeposition: the NiMo system
  • 8.8. Ternary Systems
  • 8.8.1. Kink site positions of ternary systems
  • 8.8.2. The Markov chain theory for ternary systems
  • 8.8.3. Example: prediction of the composition of CoFeNi alloys
  • 9. Oxides and Semiconductors
  • 9.1. Electrochemical Properties of a Semiconductor
  • 9.1.1. Band model of a semiconductor
  • 9.1.2. Semiconductor-electrolyte contact
  • 9.1.3. Gap states and surface states
  • 9.1.4. Current-potential curves
  • 9.1.5. Space-charge capacitance
  • 9.2. Photoelectrochemistry of Semiconductors
  • 9.2.1. Photocurrents
  • 9.2.2. Intensity modulated photocurrent spectroscopy (IMPS)
  • 9.2.3. Photopotentials and photopotential transients
  • 9.3. Spectroscopic Methods
  • 9.3.1. In situ spectroscopic methods
  • 9.3.2. In situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS)
  • 9.3.3. In situ Mossbauer spectroscopy
  • 9.3.4. Ex situ methods
  • 9.4. Microscopy
  • 9.5. Oxide Particles
  • 9.5.1. Batteries
  • 9.5.2. Lithium ion batteries
  • 9.5.3. TiO[subscript 2]-based photovoltaic cells
  • 9.5.4. Catalytic activity of oxide particles
  • 9.6. Oxide Layers
  • 9.7. Electrochemical Deposition of Semiconductors
  • 10. Corrosion and Corrosion Protection
  • 10.1. Corrosion
  • 10.1.1. Fundamental processes
  • 10.1.2. Mechanism of metal dissolution
  • 10.1.3. Mechanisms of compensation reactions
  • 10.1.4. Iron and steel
  • 10.1.5. Metallurgical aspects of iron and steel
  • 10.1.6. Copper
  • 10.1.7. Zinc
  • 10.1.8. Corrosion products
  • 10.1.9. Corrosion of alloys
  • 10.2. Corrosion Protection
  • 10.2.1. Passivity
  • 10.2.2. Cathodic protection
  • 10.2.3. Corrosion inhibition
  • 10.2.4. Phosphatizing
  • 10.2.5. Chromatizing
  • 10.2.6. Corrosion protection by surface coatings
  • 11. Intrinsically Conducting Polymers
  • 11.1. Chemical Synthesis
  • 11.2. Electrochemical Synthesis and Surface Film Formation
  • 11.3. Film Formation with Adhesion Promoters
  • 11.4. Ion Transport During Oxidation-Reduction
  • 11.4.1. Analyzing oxidation-reduction cycles using QCMB
  • 11.5. Electrical and Optical Film Properties
  • 11.5.1. Impedance of conducting polymers
  • 11.5.2. Neutral state properties
  • 11.5.3. Photoelectrochemical properties
  • 11.5.4. Polaron-bipolaron model of conducting polymers
  • 11.5.5. Spectro-electrochemical methods
  • 11.6. Copolymerization
  • 11.6.1. Mechanism of copolymerization
  • 11.6.2. Structure analysis of copolymers
  • 11.6.3. Properties of copolymers
  • 11.7. Corrosion Protection by Intrinsically Conducting Polymers
  • 11.7.1. Film formation on non-noble metals
  • 11.7.2. Kinetic experiments of corrosion protection
  • 11.7.3. Role of anions for a possible corrosion protection of conducting polymers
  • 12. Nanoelectrochemistry
  • 12.1. Going to Atomic Dimensions
  • 12.2. Co-Deposition
  • 12.2.1. Particle dispersions
  • 12.2.2. Determination of the zeta potential
  • 12.2.3. Factors influencing zeta potential and particle properties
  • 12.2.4. Properties of the metal surface
  • 12.2.5. Process parameters influencing the incorporation
  • 12.2.6. Mechanistic models
  • 12.2.7. General concepts for the development of a model
  • 12.2.8. Examples
  • 12.3. Compositionally Modulated Multi-Layers
  • 12.3.1. Plating of multi-layers
  • 12.3.2. Examples of multi-layers
  • 12.4. Core-Shell Composites
  • 12.4.1. Preparation procedure
  • 12.4.2. Particle characterization: applications
  • Index