Symmetric generation of groups : with applications to many of the sporadic finite simple groups /

Saved in:
Bibliographic Details
Author / Creator:Curtis, Robert, 1946-
Imprint:Cambridge : Cambridge University Press, 2007.
Description:xiv, 317 p. : ill. (some col.) ; 24 cm.
Language:English
Series:Encyclopedia of mathematics and its applications ; 111
Subject:Sporadic groups (Mathematics)
Finite simple groups.
Symmetry groups.
Finite simple groups.
Sporadic groups (Mathematics)
Symmetry groups.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6493428
Hidden Bibliographic Details
ISBN:9780521857215 (hbk.)
052185721X (hbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Acknowledgements
  • I. Motivation
  • Introduction to Part I
  • 1. The Mathieu group M[subscript 12]
  • 1.1. The combinatorial approach
  • 1.2. The regular dodecahedron
  • 1.3. The algebraic approach
  • 1.4. Independent proofs
  • 2. The Mathieu group M[subscript 24]
  • 2.1. The combinatorial approach
  • 2.2. The Klein map
  • 2.3. The algebraic approach
  • 2.4. Independent proofs
  • Conclusions to Part I
  • II. Involutory Symmetric Generators
  • 3. The (involutory) progenitor
  • 3.1. Free products of cyclic groups of order 2
  • 3.2. Semi-direct products and the progenitor P
  • 3.3. The Cayley graph of P over N
  • 3.4. The regular graph preserved by P
  • 3.5. Homomorphic images of P
  • 3.6. The lemma
  • 3.7. Further properties of the progenitor
  • 3.8. Coxeter diagrams and Y-diagrams
  • 3.9. Introduction to Magma and GAP
  • 3.10. Algorithm for double coset enumeration
  • 3.11. Systematic approach
  • 4. Classical examples
  • 4.1. The group PGL[subscript 2](7)
  • 4.2. Exceptional behaviour of S[subscript n]
  • 4.3. The 11-point biplane and PGL[subscript 2](11)
  • 4.4. The group of the 28 bitangents
  • 5. Sporadic simple groups
  • 5.1. The Mathieu group M[subscript 22]
  • 5.2. The Janko group J[subscript 1]
  • 5.3. The Higman-Sims group
  • 5.4. The Hall-Janko group and the Suzuki chain
  • 5.5. The Mathieu groups M[subscript 12] and M[subscript 24]
  • 5.6. The Janko group J[subscript 3]
  • 5.7. The Mathieu group M[subscript 24] as control subgroup
  • 5.8. The Fischer groups
  • 5.9. Transitive extensions and the O'Nan group
  • 5.10. Symmetric representation of groups
  • 5.11. Appendix to Chapter 5
  • III. Non-Involutory Symmetric Generators
  • 6. The (non-involutory) progenitor
  • 6.1. Monomial automorphisms
  • 6.2. Monomial representations
  • 6.3. Monomial action of a control subgroup
  • 7. Images of the progenitors in Chapter 6
  • 7.1. The Mathieu group M[subscript 11]
  • 7.2. The Mathieu group M[subscript 23]
  • 7.3. The Mathieu group M[subscript 24]
  • 7.4. Factoring out a 'classical' relator
  • 7.5. The Suzuki chain and the Conway group
  • 7.6. Systematic approach
  • 7.7. Tabulated results
  • 7.8. Some sporadic groups
  • References
  • Index