Quantum field theory /

Saved in:
Bibliographic Details
Author / Creator:Srednicki, Mark Allen.
Imprint:Cambridge : Cambridge University Press, 2007.
Description:xxi, 641 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6234657
Hidden Bibliographic Details
ISBN:9780521864497 (cased)
0521864496 (cased)
Notes:Includes bibliographical references and index.
Table of contents also issued online.
Table of Contents:
  • Preface for students
  • Preface for instructors
  • Acknowledgements
  • Part I. Spin Zero
  • 1. Attempts at relativistic quantum mechanics
  • 2. Lorentz invariance
  • 3. Canonical quantization of scalar fields
  • 4. The spin-statistics theorem
  • 5. The LSZ reduction formula
  • 6. Path integrals in quantum mechanics
  • 7. The path integral for the harmonic oscillator
  • 8. The path integral for free field theory
  • 9. The path integral for interacting field theory
  • 10. Scattering amplitudes and the Feynman rules
  • 11. Cross sections and decay rates
  • 12. Dimensional analysis with ?=c=1
  • 13. The Lehmann-KÃñllÃ(c)n form
  • 14. Loop corrections to the propagator
  • 15. The one-loop correction in Lehmann-KÃñllÃ(c)n form
  • 16. Loop corrections to the vertex
  • 17. Other 1PI vertices
  • 18. Higher-order corrections and renormalizability
  • 19. Perturbation theory to all orders
  • 20. Two-particle elastic scattering at one loop
  • 21. The quantum action
  • 22. Continuous symmetries and conserved currents
  • 23. Discrete symmetries: P, T, C, and Z
  • 24. Nonabelian symmetries
  • 25. Unstable particles and resonances
  • 26. Infrared divergences
  • 27. Other renormalization schemes
  • 28. The renormalization group
  • 29. Effective field theory
  • 30. Spontaneous symmetry breaking
  • 31. Broken symmetry and loop corrections
  • 32. Spontaneous breaking of continuous symmetries
  • Part II. Spin One Half
  • 33. Representations of the Lorentz Group
  • 34. Left- and right-handed spinor fields
  • 35. Manipulating spinor indices
  • 36. Lagrangians for spinor fields
  • 37. Canonical quantization of spinor fields I
  • 38. Spinor technology
  • 39. Canonical quantization of spinor fields II
  • 40. Parity, time reversal, and charge conjugation
  • 41. LSZ reduction for spin-one-half particles
  • 42. The free fermion propagator
  • 43. The path integral for fermion fields
  • 44. Formal development of fermionic path integrals
  • 45. The Feynman rules for Dirac fields
  • 46. Spin sums
  • 47. Gamma matrix technology
  • 48. Spin-averaged cross sections
  • 49. The Feynman rules for majorana fields
  • 50. Massless particles and spinor helicity
  • 51. Loop corrections in Yukawa theory
  • 52. Beta functions in Yukawa theory
  • 53. Functional determinants
  • Part III. Spin One
  • 54. Maxwell's equations
  • 55. Electrodynamics in coulomb gauge
  • 56. LSZ reduction for photons
  • 57. The path integral for photons
  • 58. Spinor electrodynamics
  • 59. Scattering in spinor electrodynamics
  • 60. Spinor helicity for spinor electrodynamics
  • 61. Scalar electrodynamics
  • 62. Loop corrections in spinor electrodynamics
  • 63. The vertex function in spinor electrodynamics
  • 64. The magnetic moment of the electron
  • 65. Loop corrections in scalar electrodynamics
  • 66. Beta functions in quantum electrodynamics
  • 67. Ward identities in quantum electrodynamics I
  • 68. Ward identities in quantum electrodynamics II
  • 69. Nonabelian gauge theory
  • 70. Group representations
  • 71. The path integral for nonabelian gauge theory
  • 72. The Feynman rules for nonabelian gauge theory
  • 73. The beta function for nonabelian gauge theory
  • 74. BRST symmetry
  • 75. Chiral gauge theories and anomalies
  • 76. Anomalies in global symmetries
  • 77. Anomalies and the path integral for fermions
  • 78. Background field gauge
  • 79. Gervais-Neveu gauge
  • 80. The Feynman rules for N x N matrix fields
  • 81. Scattering in quantum chromodynamics
  • 82. Wilson loops, lattice theory, and confinement
  • 83. Chiral symmetry breaking
  • 84. Spontaneous breaking of gauge symmetries
  • 85. Spontaneously broken abelian gauge theory
  • 86. Spontaneously broken nonabelian gauge theory
  • 87. The standard model: Gauge and Higgs sector
  • 88. The standard model: Lepton sector
  • 89. The standard model: Quark sector
  • 90. Electroweak interactions of hadrons
  • 91. Neutrino masses
  • 92. Solitons and monopoles
  • 93. Instantons and theta vacua
  • 94. Quarks and theta vacua
  • 95. Supersymmetry
  • 96. The minimal supersymmetric standard model
  • 97. Grand unification
  • Bibliography