Inelastic light scattering of semiconductor nanostructures : fundamentals and recent advances /

Saved in:
Bibliographic Details
Author / Creator:Schuller, Christian.
Imprint:Berlin : Springer, 2006.
Description:xi, 178 p. : ill. ; 24 cm.
Language:English
Series:Springer tracts in modern physics ; 219
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6109542
Hidden Bibliographic Details
ISBN:3540365257 (hd.bd.)
Notes:Includes bibliographical references and index.
Standard no.:9783540365259
Table of Contents:
  • 1. Introduction
  • References
  • Part I. Basic Concepts
  • 2. Fundamentals of Semiconductors and Nanostructures
  • 2.1. III-V Semiconductors: Crystal and Band Structure
  • 2.1.1. Phenomenology
  • 2.1.2. k*p Theory
  • 2.2. Electrons in Three, Two, One, and Zero Dimensions
  • 2.3. Layered Growth of Semiconductors: Vertical Nanostructures
  • 2.3.1. Molecular-Beam Epitaxy (MBE)
  • 2.4. Electronic Ground State of Vertical Nanostructures
  • 2.4.1. Envelope Function Approximation (EFA)
  • 2.4.2. Self-Consistent Band Structure Calculation
  • 2.5. Lateral Micro- and Nanostructures
  • 2.5.1. General Remarks
  • 2.5.2. Lithography and Etching
  • 2.5.3. Self-Assembled Quantum Dots
  • 2.6. Electronic Ground State of Lateral Nanostructures
  • References
  • 3. Electronic Elementary Excitations
  • 3.1. Single-Particle Continua
  • 3.2. Electron-Density Waves: Phenomenology of Collective Charge- and Spin-Density Excitations
  • 3.3. Collective Excitations: Theoretical Models
  • 3.3.1. Basic Ideas of RPA and TDLDA
  • 3.3.2. Application to Two-Subband System
  • 3.3.3. Plasmon-LO Phonon Coupling
  • References
  • 4. Basic Concepts of Inelastic Light Scattering, Experiments on Quantum Wells
  • 4.1. Macroscopic Approach
  • 4.1.1. General Remarks
  • 4.1.2. Macroscopic Point of View
  • 4.1.3. Dissipation-Fluctuation Analysis
  • 4.2. Microscopic Approach, Polarization Selection Rules
  • 4.2.1. Two- and Three-Step Scattering Processes
  • 4.2.2. Scattering Cross Section: General Considerations
  • 4.2.3. Scattering by Crystal Electrons: Polarization Selection Rules
  • 4.2.4. Parity Selection Rules in Nanostructures
  • 4.2.5. Intrasubband Excitations, Grating Coupler-Assisted Scattering
  • 4.2.6. Multiple Cyclotron Resonance Excitations in Quantum Wells
  • References
  • Part II. Recent Advances
  • 5. Quantum Dots: Spectroscopy of Artificial Atoms
  • 5.1. Introduction
  • 5.2. Semiconductor Quantum Dots
  • 5.2.1. Preparation of Quantum Dots
  • 5.2.2. Electronic Ground State and Excitations
  • 5.3. GaAs-AlGaAs Deep-Etched Quantum Dots
  • 5.3.1. Parity Selection Rules in Quantum Dots
  • 5.3.2. Fine Structure in Quantum Dots
  • 5.3.3. The Important Role of Extreme Resonance
  • 5.3.4. Calculations for Few-Electron Quantum Dots
  • 5.4. InAs Self-Assembled Quantum Dots
  • 5.4.1. Few-Electron Quantum-Dot Atoms
  • 5.4.2. Electronic Excitations in InAs SAQD
  • 5.4.3. Comparison with Exact Calculations
  • References
  • 6. Quantum Wires: Interacting Quantum Liquids
  • 6.1. Introduction
  • 6.2. Electronic Elementary Excitations in Quantum Wires
  • 6.2.1. Ground State and Excitations
  • 6.2.2. Experimental Spectra and Wave-Vector Dependence
  • 6.3. Confined and Propagating 1D Plasmons in a Magnetic Field
  • 6.3.1. Microscopic Picture for Confined Plasmons
  • 6.3.2. Coupling with Bernstein Modes
  • 6.4. Towards the Tomonaga-Luttinger Liquid?
  • References
  • 7. Tunneling-Coupled Systems
  • 7.1. Introduction
  • 7.2. Charge-Density Excitation Spectrum in Tunneling-Coupled Double Quantum Wells
  • 7.3. Experiments on Tunable GaAs-AlGaAs Double Quantum Wells
  • 7.4. Vertically-Coupled Quantum Wires
  • References
  • 8. Inelastic Light Scattering in Microcavities
  • 8.1. Introduction
  • 8.2. 2DES Inside a Semiconductor Microcavity
  • 8.3. Optical Double-Resonance Experiments
  • References
  • Part III. Appendix
  • Kronecker Products of Dipole Matrix Elements I.
  • Kronecker Products of Dipole Matrix Elements II.
  • Index