Physics in nuclear medicine /

Saved in:
Bibliographic Details
Author / Creator:Cherry, Simon R.
Edition:3rd ed.
Imprint:Philadelphia, PA : Saunders, c2003.
Description:xiii, 523 p. : ill. ; 27 cm.
Language:English
Subject:Medical physics.
Nuclear medicine.
Medical physics.
Nuclear medicine.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5169676
Hidden Bibliographic Details
Other uniform titles:Sorenson, James A., 1938-
Phelps, Michael E.
Sorenson, James A., 1938- Physics in nuclear medicine.
ISBN:072168341X
Notes:Revision of: Physics in nuclear medicine / James A. Sorenson, Michael E. Phelps. 2nd ed. c1987.
Includes bibliographical references and index.
Table of Contents:
  • 1. What Is Nuclear Medicine?
  • A.. Fundamental Concepts
  • B.. The Power of Nuclear Medicine
  • C.. Historical Overview
  • D.. Current Practice of Nuclear Medicine
  • E.. The Role of Physics in Nuclear Medicine
  • 2. Basic Atomic and Nuclear Physics
  • A.. Quantities and Units
  • B.. Radiation
  • C.. Atoms
  • D.. The Nucleus
  • 3. Modes of Radioactive Decay
  • A.. General Concepts
  • B.. Chemistry and Radioactivity
  • C.. Decay by [beta superscript -] Emission
  • D.. Decay by ([beta superscript -], [gamma]) Emission
  • E.. Isomeric Transition (IT) and Internal Conversion (IC)
  • F.. Electron Capture (EC) and (EC, [gamma]) Decay
  • G.. Positron ([beta superscript +]) and ([beta superscript +], [gamma]) Decay
  • H.. Competitive [beta superscript +] and EC Decay
  • I.. Decay by [alpha] Emission and by Nuclear, Fission
  • J.. Decay Modes and the Line of Stability
  • K.. Sources of Information on Radionuclides
  • 4. Decay of Radioactivity
  • A.. Activity
  • B.. Exponential Decay
  • C.. Methods for Determining Decay Factors
  • D.. Image-Frame Decay Corrections
  • E.. Specific Activity
  • F.. Decay of a Mixed Radionuclide Sample
  • G.. Parent-Daughter Decay
  • 5. Radionuclide and Radiopharmaceutical Production
  • A.. Reactor-Produced Radionuclides
  • B.. Accelerator-Produced Radionuclides
  • C.. Radionuclide Generators
  • D.. Equations for Radionuclide Production
  • E.. Radionuclides for Nuclear Medicine
  • F.. Radiopharmaceutical Preparation
  • 6. Interaction of Radiation with Matter
  • A.. Interactions of Charged Particles with Matter
  • B.. Charged-Particle Ranges
  • C.. Passage of High-Energy Photons through Matter
  • D.. Attenuation of Photon Beams
  • 7. Radiation Detectors
  • A.. Gas-Filled Detectors
  • B.. Semiconductor Detectors
  • C.. Scintillation Detectors
  • 8. Electronic Instrumentation for Radiation Detection Systems
  • A.. Preamplifiers
  • B.. Amplifiers
  • C.. Pulse-Height Analyzers
  • D.. Time-to-Amplitude Converters
  • E.. Digital Counters and Rate Meters
  • F.. Coincidence Units
  • G.. High-Voltage Power Supplies
  • H.. Nuclear Instrument Modules
  • I.. Cathode Ray Tube
  • J.. Oscilloscopes
  • K.. Computer Monitors
  • 9. Nuclear Counting Statistics
  • A.. Types of Measurement Error
  • B.. Nuclear Counting Statistics
  • C.. Propagation of Errors
  • D.. Applications of Statistical Analysis
  • E.. Statistical Tests
  • 10. Pulse-Height Spectrometry
  • A.. Basic Principles
  • B.. Spectrometry with Nal(TI)
  • C.. Spectrometry with Other Detectors
  • 11. Problems in Radiation Detection and Measurement
  • A.. Detection Efficiency
  • B.. Problems in the Detection and Measurement of [beta] Particles
  • C.. Dead Time
  • D.. Quality Assurance for Radiation Measurement Systems
  • 12. Counting Systems
  • A.. Nal(TI) Well Counter
  • B.. Counting with Conventional Nal(TI) Detectors
  • C.. Liquid Scintillation Counters
  • D.. Gas-Filled Detectors
  • E.. Semiconductor Detector Systems
  • F.. In Vivo Counting Systems
  • 13. The Gamma Camera: Basic Principles
  • A.. General Concepts of Radionuclide Imaging
  • B.. Basic Principles of the Gamma Camera
  • C.. Types of Gamma Cameras and Their Clinical Uses
  • 14. The Gamma Camera: Performance Characteristics
  • A.. Basic Performance Characteristics
  • B.. Detector Limitations: Nonuniformity and Nonlinearity
  • C.. Design and Performance Characteristics of Parallel-Hole Collimators
  • D.. Performance Characteristics of Converging, Diverging, and Pinhole Collimators
  • E.. Measurements of Gamma Camera Performance
  • 15. Image Quality in Nuclear Medicine
  • A.. Basic Methods for Characterizing and Evaluating Image Quality
  • B.. Spatial Resolution
  • C.. Contrast
  • D.. Noise
  • E.. Observer Performance Studies
  • 16. Tomographic Reconstruction in Nuclear Medicine
  • A.. General Concepts, Notation, and Terminology
  • B.. Backprojection and Fourier-Based Techniques
  • C.. Image Quality in Fourier Transform and Filtered Backprojection Techniques
  • D.. Iterative Reconstruction Algorithms
  • E.. Reconstruction of Fan-Beam and Cone-Beam Data
  • 17. Single Photon Emission Computed Tomography
  • A.. SPECT Systems
  • B.. Practical Implementation of SPECT
  • C.. Performance Characteristics of SPECT Systems
  • D.. Clinical Applications of SPECT
  • 18. Positron Emission Tomography
  • A.. Annihilation Coincidence Detection
  • B.. PET Detector and Scanner Designs
  • C.. Data Acquisition for PET
  • D.. Data Corrections and Quantitative Aspects of PET
  • E.. Clinical and Research Applications of PET
  • 19. Digital Image Processing in Nuclear Medicine
  • A.. Digital Images
  • B.. Digital Image-Processing Techniques
  • C.. Processing Environment
  • 20. Tracer Kinetic Modeling
  • A.. Basic Concepts
  • B.. Tracers and Compartments
  • C.. Tracer Delivery and Transport
  • D.. Formulation of a Compartmental Model
  • E.. Examples of Dynamic Imaging and Tracer Kinetic Models
  • F.. Summary
  • 21. Internal Radiation Dosimetry
  • A.. Radiation Dose and Equivalent Dose: Quantities and Units
  • B.. Calculation of Radiation Dose (MIRD Method)
  • 22. Radiation Safety and Health Physics
  • A.. Quantities and Units
  • B.. Regulations Pertaining to the Use of Radionuclides
  • C.. Safe Handling of Radioactive Materials
  • D.. Disposal of Radioactive Waste
  • E.. Radiation Monitoring
  • Appendix A. Unit Conversions
  • Appendix B. Properties of the Elements
  • Appendix C. Characteristics of Some Medically Important Radionuclides
  • Appendix D. Mass Attenuation Coefficients for Water, Sodium lodide, BGO, CZT, and Lead
  • Appendix E. Effective Dose Equivalent (mSv/MBq) and Radiation Absorbed Dose Estimates (mGy/MBq) to Adult Subjects from Selected Internally Administered Radiopharmaceuticals
  • Appendix F. The Fourier Transform
  • A.. The FT: What It Represents
  • B.. Calculating FTs
  • C.. Some Properties of FTs
  • D.. Some Examples of FTs
  • Appendix G. Convolutions
  • Index