Semiconductor and metal nanocrystals : synthesis and electronic and optical properties /

Saved in:
Bibliographic Details
Imprint:New York : Marcel Dekker, Inc., c2004.
Description:xiv, 484 p. : ill. ; 24 cm.
Language:English
Series:Optical engineering
Optical engineering (Marcel Dekker, Inc.) ; v. 87.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5134677
Hidden Bibliographic Details
Other authors / contributors:Klimov, Victor I.
ISBN:082474716X (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Contributors
  • Part I.. Semiconductor Nanocrystals (Nanocrystal Quantum Dots)
  • 1.. "Soft" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals
  • I.. Introduction
  • II.. Colloidal Nanosynthesis
  • III.. Inorganic Surface Modification
  • IV.. Shape Control
  • V.. Phase Transitions and Phase Control
  • VI.. Nanocrystal Doping
  • VII.. Nanocrystal Assembly and Encapsulation
  • References
  • 2.. Electronic Structure in Semiconductor Nanocrystals
  • I.. Introduction
  • II.. Theoretical Framework
  • III.. Cadmium Selenide Nanocrystals
  • IV.. Beyond CdSe
  • References
  • 3.. Fine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals
  • I.. Introduction
  • II.. Fine Structure of the Band-Edge Exciton in CdSe Nanocrystals
  • III.. Fine Structure of the Band-Edge Excitons in Magnetic Fields
  • IV.. Experiment
  • V.. Discussion and Conclusions
  • Appendix. Calculation of the Hole g Factor
  • References
  • 4.. Intraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots
  • I.. Introduction
  • II.. Background
  • III.. Experimental Observations of the Intraband Absorption in Colloidal Quantum Dots
  • IV.. Intraband Absorption Probing of Carrier Dynamics
  • V.. Conclusions
  • References
  • 5.. Charge Carrier Dynamics and Optical Gain in Nanocrystal Quantum Dots: From Fundamental Photophysics to Quantum Dot Lasing
  • I.. Introduction
  • II.. Energy Structures and Intraband Relaxation in NQDs
  • III.. Carrier Trapping at Interface States and Excited-State Absorption in NQDs
  • IV.. Multiparticle Effects and Optical Gain in NQDs
  • V.. Optical Amplification and Lasing in NQDs
  • VI.. Conclusions and Outlook
  • References
  • 6.. Optical Dynamics in Single Semiconductor Quantum Dots
  • I.. Introduction
  • II.. Single-Quantum-Dot Spectroscopy
  • III.. Spectral Diffusion and Fluorescence Intermittency
  • IV.. Correlation Between Spectral Diffusion and Blinking
  • V.. "Power-Law" Blinking Statistics
  • VI.. Conclusions
  • References
  • 7.. Electrical Properties of Semiconductor Nanocrystals
  • I.. Introduction
  • II.. Theory of Electron Transfer Between Localized States
  • III.. Experimental Techniques
  • IV.. Nanocrystals and Photoinduced Electron Transfer
  • V.. Charge Transport in Nanocrystal Films
  • VI.. Nanocrystal-Based Devices
  • VII.. Conclusions
  • References
  • 8.. Tunneling and Optical Spectroscopy of Semiconductor Nanocrystal Quantum Dots: Single-Particle and Ensemble Properties
  • I.. Introduction
  • II.. General Comparison Between Tunneling and Optical Spectroscopy of QDs
  • III.. Correlation Between Optical and Tunneling Spectra of InAs Nanocrystal QDs
  • IV.. Junction Symmetry Effects on the Tunneling Spectra
  • V.. Tunneling and Optical Spectroscopy of Core-Shell Nanocrystal QDs
  • VI.. QD Wave-Function Imaging
  • VII.. Concluding Remarks
  • References
  • 9.. III-V Quantum Dots and Quantum Dot Arrays: Synthesis, Optical Properties, Photogenerated Carrier Dynamics, and Applications to Photon Conversion
  • I.. Introduction
  • II.. Synthesis of Quantum Dots
  • III.. Unique Optical Properties
  • IV.. Relaxation Dynamics of Photogenerated Carriers in QDs
  • V.. Quantum-Dot Arrays
  • VI.. Applications: Quantum-Dot Solar Cells
  • References
  • Part II.. Metal Nanocrystals
  • 10.. Synthesis and Fabrication of Metal Nanocrystal Superlattices
  • I.. Introduction
  • II.. Nanocrystal Characterization
  • III.. Superlattice Formation
  • IV.. Physical Consequences of Superlattice Order
  • V.. Conclusions and Future Work
  • References
  • 11.. Optical Spectroscopy of Surface Plasmons in Metal Nanoparticles
  • I.. Introduction
  • II.. Size, Shape, and Composition Dependence of Surface Plasmon Resonances
  • III.. Dephasing of the Surface Plasmon Resonance
  • IV.. Nonradiative Decay of the Surface Plasmon Resonance After Laser Excitation
  • V.. Photothermal Shape Changes of Gold Nanorods
  • VI.. Summary and Conclusions
  • References
  • 12.. Time-Resolved Spectroscopy of Metal Nanoparticles
  • I.. Introduction
  • II.. Experimental: Synthesis and Laser Techniques
  • III.. Coherent Excitation of Acoustic Vibrational Modes
  • IV.. Gold Nanorods
  • V.. Bimetallic Nanoparticles
  • VI.. Summary and Conclusions
  • References
  • Index