Laser doppler and phase doppler measurement techniques /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2003.
Description:xiii, 738 p. : ill. ; 24 cm.
Language:English
Series:Experimental fluid mechanics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4849377
Hidden Bibliographic Details
Other authors / contributors:Albrecht, Heinz-Eberhard.
ISBN:3540678387 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Introduction
  • 1.1. Historical Perspective
  • 1.2. Use of the Book
  • Part I. Fundamentals
  • 2. Basic Measurement Principles
  • 2.1. Laser Doppler Technique
  • 2.2. Phase Doppler Technique
  • 2.3. Time-Shift Technique
  • 3. Fundamentals of Light Propagation and Optics
  • 3.1. Electromagnetic Waves
  • 3.1.1. Description of Electromagnetic Waves
  • 3.1.2. Polarization
  • 3.1.3. Boundary Conditions and Fresnel Coefficients
  • 3.1.4. Laser Beams
  • 3.1.5. Optical Mixing of Electromagnetic Waves
  • 3.1.6. The Doppler Effect
  • 3.2. Optical Components
  • 3.2.1. Matrix Transformation for Imaging
  • 3.2.2. Propagation of Laser Beams Through Lenses and Apertures
  • 3.2.3. Optical Gratings and Bragg Cells
  • 3.2.4. Optical Fibers
  • 3.2.5. Photodetectors
  • 4. Light Scattering from Small Particles
  • 4.1. Scattering of a Plane Wave
  • 4.1.1. Description using Geometrical Optics (GO)
  • 4.1.2. Description using Lorenz-Mie Theory and Debye Series
  • 4.1.3. Scattering Characteristics for a Plane Wave
  • 4.2. Scattering of an Inhomogeneous Field
  • 4.2.1. Extension to the Method of Geometrical Optics (EGO)
  • 4.2.2. Description using Fourier Lorenz-Mie Theory (FLMT)
  • 4.2.3. Scattering Characteristics of an Inhomogeneous Field
  • 4.3. Characteristic Quantities of Light Scattered by Small Particles
  • Part II. Measurement Principles
  • 5. Signal Generation in Laser Doppler and Phase Doppler Systems
  • 5.1. The Signal From an Arbitrarily Positioned Detector
  • 5.1.1. Fundamental Relations
  • 5.1.2. Signals from very Small Particles
  • 5.1.3. Signals from Large Particles
  • 5.1.4. Visibility of the Signal
  • 5.1.5. Shift Frequency Influence
  • 5.1.6. Measurement and Detection Volumes
  • 5.1.7. Statistical Time Series of Particle Signals
  • 5.2. Laser Doppler Technique
  • 5.2.1. Dual-Beam Configuration
  • 5.2.2. Reference-Beam Configuration
  • 5.3. Particle Sizing with Phase Doppler and Time-Shift Technique
  • 5.3.1. Determination of Incident and Glare Point Positions
  • 5.3.2. Phase Doppler Technique
  • 5.3.3. Reference Phase Doppler Technique
  • 5.3.4. Time-Shift Technique
  • 5.4. Refractive Index Determination
  • 5.5. Moiré Models
  • 6. Signal Detection, Processing and Validation
  • 6.1. Review of Some Fundamentals
  • 6.1.1. Discrete Fourier Transform (DFT)
  • 6.1.2. Correlation Function
  • 6.1.3. Hilbert Transform
  • 6.1.4. Signal Noise
  • 6.1.5. Cramèr-Rao Lower Bound (CRLB)
  • 6.2. Signal Detection
  • 6.3. Estimation of the Doppler Frequency
  • 6.3.1. Spectral Analysis
  • 6.3.2. Correlation Techniques
  • 6.3.3. Period Timing Devices
  • 6.3.4. Quadrature Demodulation
  • 6.4. Determination of Signal Phase
  • 6.4.1. Cross-Spectral Density
  • 6.4.2. Covariance Methods
  • 6.4.3. Quadrature Methods
  • 6.5. Model-Based Signal Processing
  • 6.5.1. Fundamentals
  • 6.5.2. Example Applications
  • 7. Laser Doppler Systems
  • 7.1. Input Parameters from the Flow and Test Rig
  • 7.1.1. Description of the Flow Field
  • 7.1.2. Necessary Spatial and Temporal Resolution
  • 7.1.3. Flow and Flow-Rig Parameters
  • 7.2. Components and Layout of the Transmitting Optics
  • 7.2.1. Collimators
  • 7.2.2. Beamsplitters and Polarizers
  • 7.2.3. Methods for Achieving Directional Sensitivity
  • 7.2.4. Generation of the Measurement Volume
  • 7.3. Layout of Receiving Optics
  • 7.4. System Description
  • 7.4.1. One-Velocity Component Systems
  • 7.4.2. Two-Velocity Component Systems
  • 7.4.3. Three-Velocity Component Systems
  • 7.4.4. Multi-Point Systems
  • 7.5. Laser Transit Velocimetry
  • 8. Phase Doppler Systems
  • 8.1. Selection of the Optical Configuration
  • 8.2. Single-Point Phase Doppler Systems
  • 8.2.1. Three-detector, Standard Phase Doppler System
  • 8.2.2. Planar Phase Doppler System
  • 8.2.3. Dual-Mode Phase Doppler
  • 8.2.4. Dual-Burst Technique
  • 8.2.5. Extended Phase Doppler Technique
  • 8.2.6. Reference Phase Doppler Technique
  • 8.3. Further Design Considerations for Phase Doppler Systems
  • 8.3.1. Influence of the Gaussian Beam
  • 8.3.2. Slit Effect
  • 8.3.3. Non-Spherical and Inhomogeneous Particles
  • 8.4. Multi-Dimensional Sizing Techniques
  • 8.4.1. Interferometric Particle Imaging (IPI)
  • 8.4.2. Global Phase Doppler (GPD) Technique
  • 8.4.3. Concentration Limits
  • 9. Further Particle Sizing Methods Based on the Laser Doppler Technique
  • 9.1. Techniques B ased o n Signal Amplitude
  • 9.1.1. Cross-sectional Area Difference Technique
  • 9.1.2. Combined Laser Doppler and White Light Sizer
  • 9.2. Time-Shift Technique
  • 9.2.1. Time-Shift Technique in Forward Scatter
  • 9.2.2. Time-Shift Technique in Backscatter
  • 9.3. Rainbow Refractometry
  • 9.4. Shadow Doppler Technique
  • Part III. Data Processing
  • 10. Fundamentals of Data Processing
  • 10.1. Statistical Principles
  • 10.2. Stationary Random Processes
  • 10.3. Estimator Expectation and Variance
  • 10.3.1. Estimators for the Mean
  • 10.3.2. Estimators for Higher Order Correlations
  • 10.3.3. Estimators for Transient Processes
  • 10.4. Propagation of Errors
  • 11. Processing of Laser Doppler Data
  • 11.1. Estimation of Moments
  • 11.2. Estimation of Turbulent Velocity Spectra
  • 11.2.1. The Slotting Technique
  • 11.2.2. Reconstruction with FFT
  • 11.2.3. Post-Processing Steps
  • 11.3. Correlation Estimates from Multi-Point Systems
  • 11.4. Measurements in Transient Processes
  • 11.4.1. Effect of Window Size on Phase and Ensemble Statistics
  • 11.4.2. Energy Partitioning in Transient Flows
  • 11.5. Data Simulation
  • 12. Processing of Phase Doppler Data
  • 12.1. Validation Procedures
  • 12.1.1. SNR Validation
  • 12.1.2. Phase Difference Validation
  • 12.1.3. Sphericity Validation
  • 12.1.4. Amplitude Validation
  • 12.1.5. Transit Time Validation
  • 12.2. Particle Statistics
  • 12.2.1. Flux Density Vectors and Concentration
  • 12.2.2. Distribution of Particles
  • 12.2.3. Geometry of the Detection Volume
  • 12.2.4. Estimation of the Number of Particles
  • 12.2.5. Summary and Examples
  • 12.3. Post-Processing of Phase Doppler Data
  • 12.3.1. Particle Size Distributions
  • 12.3.2. Mean Diameters
  • 12.3.3. Non-Spherical and Inhomogeneous Particles
  • Part IV. Application Issues
  • 13. Choice of Particles and Particle Generation
  • 13.1. Particle Motion in Flows
  • 13.2. Particle Generation
  • 13.2.1. Droplet Generation
  • 13.2.2. Solid Particle Generation
  • 13.3. Introducing Particles into the Flow
  • 13.3.1. Liquid Flows
  • 13.3.2. Gas Flows
  • 13.3.3. Two-Phase Flows
  • 13.3.4. Natural Seeding
  • 14. System Design Considerations
  • 14.1. System Design Guidelines
  • 14.1.1. Laser Doppler Systems
  • 14.1.2. Phase Doppler Systems
  • 14.1.3. Alignment and Adjustment
  • 14.2. System Design Examples
  • 14.2.1. Velocity Measurements in a Narrow Channel Flow
  • 14.2.2. Drop Size Measurements in a Diesel Injector Spray
  • 14.3. Refractive Index Matching
  • 14.3.1. Matching with Flow Containment
  • 14.3.2. Matching for Variable Density
  • Appendix
  • List of Symbols and Acronyms
  • Derivation of Equations Describing a Laser Beam
  • Internal and Near Field Solution
  • Bibliography
  • References
  • Books (or parts thereof) on the Laser or Phase Doppler Techniques
  • Periodicals Dealing with the Laser or Phase Doppler Techniques
  • Conference Series devoted to Laser or Phase Doppler Techniques
  • Index