High-temperature superconductivity in cuprates : the nonlinear mechanism and tunneling measurements /

Saved in:
Bibliographic Details
Author / Creator:Mourachkine, Andrei.
Imprint:Dordrecht ; Boston : Kluwer Academic Publishers, c2002.
Description:xviii, 317 p. : ill. ; 25 cm.
Language:English
Series:Fundamental theories of physics ; v. 125
Subject:Copper oxide superconductors.
High temperature superconductivity.
Copper oxide superconductors.
High temperature superconductivity.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4734991
Hidden Bibliographic Details
ISBN:1402008104 (acid-free paper)
Notes:Includes bibliographical references (p. 305-313) and index.
Table of Contents:
  • Preface
  • 1.3. Strength of the electron-phonon interaction
  • 14. Structural phase transitions
  • 15. Tunneling and the soliton theory
  • 16. Modern solitons
  • 17. Neither a wave nor a particle
  • 6.. Evidence for Soliton-Like Excitations in Cuprates
  • 1. Tunneling measurements in Bi2212
  • 1.1. Underdoped Bi2212
  • 1.2. Overdoped Bi2212
  • 1.3. Ni-doped Bi2212
  • 1.4. Two components in tunneling spectra
  • 1.4. The isotope effect
  • 1.5. "Second-harmonic" humps
  • 1.6. Bisoliton-solution fits
  • 1.7. Single-soliton fit
  • 1.8. Tunneling pseudogap
  • 2. Tunneling measurements in YBCO
  • 3. Acoustic measurements in LSCO
  • 4. Nickelates and manganites
  • 4.1. NMR measurements in La[subscript 2]NiO[subscript 4.17]
  • 4.2. Tunneling measurements in La[subscript 1.4]Sr[subscript 1.6]Mn[subscript 2]O[subscript 7]
  • 7.. Bisoliton Model of High-T[subscript C] Superconductivity
  • 1.5. Energy gap
  • 1. The bisoliton model
  • 1.1. Small density of doped charge carries
  • 1.2. Large density of doped charge carries
  • 1.3. The Coulomb repulsion
  • 1.4. Stability of the bisolitons
  • 2. Bisoliton superconductivity
  • 2.1. The critical temperature
  • 2.2. Superconductivity in cuprates
  • 2.3. A concluding remark
  • 8.. The Bisoliton Model and Data
  • 1.6. Coherence length
  • 1. Main results of the bisoliton model
  • 2. Phase coherence in cuprates
  • 3. Pairing characteristics of cuprates
  • 3.1. Polaron and bisoliton energy levels
  • 3.2. The coupling parameter g
  • 3.3. Doping dependence of g and the energy gap in Bi2212
  • 3.4. Bisoliton mass
  • 3.5. Coherence length
  • 3.6. Tunneling characteristics
  • 3.7. Phonon spectrum in Bi2212
  • 1.7. Penetration depth
  • 3.8. Electron-doped NCCO
  • 3.9. Concluding remarks
  • 4. Key experiments for bisoliton superconductivity
  • 9.. The Mechanism of C-Axis Phase Coherence
  • 1. Superconductivity and magnetism
  • 1.1. Superconductivity and antiferromagnetism
  • 1.2. Superconductivity and ferromagnetism
  • 1.3. Magnetically-mediated superconductivity
  • 1.4. Characteristic features
  • 2. Layered compounds with magnetic correlations
  • 1.8. Symmetry of the order parameter
  • 3. Phase coherence in cuprates
  • 3.1. Cuprates: two energy scales
  • 3.2. Magnetic properties
  • 3.3. Phase-coherence properties
  • 3.4. Magnetic resonance peak
  • 3.5. Tunneling assisted by spin excitations in Bi2212
  • 3.6. Pr-doped YBCO
  • 3.7. Theory
  • 3.8. Concluding remarks
  • 10.. The Mechanism of High-T[subscript C] Superconductivity
  • 2. Characteristics of the superconducting state
  • 1. A general description of the mechanism
  • 2. Important elements of high-T[subscript c] superconductivity
  • 2.1. Pairing mechanism
  • 2.2. Phase diagram
  • 2.3. Phase-coherence mechanism
  • 2.4. Symmetry of the order parameters
  • 2.5. In-plane coherence lengths
  • 2.6. Effect of impurities
  • 2.7. Key experiments
  • 2.8. Future theory
  • 2.1. Type-I and type-II superconductors
  • 2.9. Interpretation of some experiments
  • 2.10. Interesting facts
  • 3. Organic and heavy-fermion superconductors
  • 11.. High-T[subscript C] Superconductivity Could be Predicted
  • 1. Back in 1985
  • 1.1. A-15 superconductors
  • 1.2. Chevrel phases
  • 1.3. Cuprates
  • 2. Principles of Superconductivity
  • 3. Different Types of Superconductivity
  • 2.2. Critical current
  • 3.1. Pairing mechanisms
  • 3.2. Phase-coherence mechanisms
  • 3.3. Different combinations
  • 3.4. Superconductivity in Two Dimensions
  • 3.5. Room-Temperature Superconductivity
  • 12.. Analysis of Tunneling Measurements in Cuprates
  • 1. Introduction
  • 2. Excitation spectrum of a Bose-Einstein condensate
  • 3. Two energy gaps in cuprates
  • 3.1. Bi2212
  • 2.3. Phase stiffness
  • 3.2. YBCO and Tl2201
  • 3.3. Phase diagram
  • 3.4. Two energy gaps in magnetic field
  • 4. Pseudogap
  • 5. Pairing gap and pseudogap
  • 5.1. Two contributions to tunneling spectra
  • 5.2. SIN and SIS junctions of cuprates
  • 6. Subgap
  • 7. Temperature dependence
  • 7.1. Superconducting state
  • 1.. Introduction
  • 2.4. Josephson effects
  • 7.2. Normal state
  • 8. The Josephson product
  • 9. Zero-bias conductance peak
  • 10. Zn and Ni doping in Bi2212
  • 11. Vortex-core states
  • 12. NCCO
  • 12.1. Symmetry of the order parameters
  • 12.2. Two energy scales
  • 12.3. Pseudogap
  • 13. SIS-junction fit
  • 2.5. Effect of impurities
  • 14. Bisoliton fit
  • 14.1. Height of quasiparticle peaks
  • 14.2. Bisoliton fit in numbers
  • 14.3. SIS-junction fit
  • References
  • Index
  • 2.6. High-frequency residual losses
  • 2.7. Acoustic properties
  • 2.8. Thermal properties
  • 3. Tunneling
  • 3.1. SIN tunneling
  • 3.2. Density of states
  • 3.3. SIS tunneling
  • 3.4. The Josephson I[subscript c]R[subscript n] product
  • 1. Superconductivity: a brief sketch
  • 3.5. Andreev reflections
  • 3.6. Tunneling techniques
  • 3.. Cuprates and Their Basic Properties
  • 1. Structure
  • 1.1. LSCO
  • 1.2. YBCO
  • 1.3. Bi2212
  • 1.4. NCCO
  • 1.5. Structural phase transitions
  • 1.6. Crystal structure and T[subscript c]
  • 2. High-T[subscript c] superconductivity: a brief historical introduction
  • 1.7. Structural defects
  • 2. Doping and charge distribution
  • 2.1. Charge doping and T[subscript c]
  • 2.2. Charge inhomogeneities
  • 3. Superconducting properties
  • 3.1. The isotope effect
  • 3.2. Absence of the correlation between [Delta](0) and T[subscript c]
  • 3.3. Effective mass anisotropy
  • 3.4. Resistivity and the effect of magnetic field
  • 3.5. Coherence length
  • 3. Superconducting materials
  • 3.6. Penetration depth and superfluid density
  • 3.7. Electronic specific heat and the condensation energy
  • 3.8. Effect of impurities
  • 3.9. Critical magnetic fields and critical current J[subscript c]
  • 3.10. Phase stiffness
  • 3.11. Phase coherence along the c axis
  • 3.12. Two energy scales: pairing and phase-coherence
  • 3.13. Cooper pairs above T[subscript c]
  • 3.14. Symmetry of the order parameter: s-wave vs d-wave
  • 3.15. Phonons in cuprates
  • 2.. The BCS Model of Superconductivity in Metals
  • 3.16. Magnetic properties
  • 3.17. Stripe phase
  • 3.18. Chains in YBCO
  • 3.19. Acoustic measurements in cuprates
  • 3.20. Effect of pressure
  • 4. Normal-state properties
  • 4.1. Pseudogap
  • 4.2. Pseudogap temperature T*
  • 4.3. Structural transitions above T[subscript c]
  • 4.4. Magnetic ordering in the undoped region
  • 1. The BCS mechanism
  • 5. Theory
  • 6. Applications
  • 6.1. Small-scale applications
  • 6.2. Large-scale applications
  • 7. A final remark
  • 4.. Cuprates: Anomaly in Tunneling Spectra
  • 1. Tunneling measurements in Bi2212
  • 1.1. Measurements below T[subscript c]
  • 1.2. Measurements above T[subscript c]
  • 1.3. Normalization procedure
  • 1.1. Electron-electron attraction
  • 1.4. Contribution from the superconducting condensate
  • 2. Tunneling measurements in YBCO
  • 5.. Nonlinear Excitations: Solitons
  • 1. Introduction
  • 2. Russell's discovery
  • 3. Korteweg-de Vries equation
  • 4. Numerical simulations
  • 5. Particle-like properties
  • 6. Frenkel-Kontorova solitons
  • 7. Topological solitons in a chain of pendulums
  • 1.2. Critical temperature
  • 8. Different categories of solitons
  • 8.1. The KdV solitons
  • 8.2. The topological solitons
  • 8.3. The envelope solitons
  • 8.4. Solitons in real systems
  • 9. Solitons in the superconducting state
  • 10. Topological solitons in polyacetylene
  • 11. Magnetic solitons
  • 12. Self-trapped states: the Davydov soliton
  • 13. Discrete breathers