Biomedical signal analysis : a case-study approach /

Saved in:
Bibliographic Details
Author / Creator:Rangayyan, Rangaraj M.
Imprint:[Piscataway, NJ] : IEEE Press ; [New York] : Wiley-Interscience, c2002.
Description:xxxv, 516 p. : ill., port.
Language:English
Series:IEEE Press series in biomedical engineering
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4619106
Hidden Bibliographic Details
ISBN:0471208116 (alk. paper)
Notes:Includes bibliographical references (p. 489-508) and index.
committed to retain 20170930 20421213 HathiTrust
Table of Contents:
  • Dedication
  • Preface
  • About the Author
  • Acknowledgments
  • Symbols and Abbreviations
  • 1. Introduction to Biomedical Signals
  • 1.1. The Nature of Biomedical Signals
  • 1.2. Examples of Biomedical Signals
  • 1.2.1. The action potential
  • 1.2.2. The electroneurogram (ENG)
  • 1.2.3. The electromyogram (EMG)
  • 1.2.4. The electrocardiogram (ECG)
  • 1.2.5. The electroencephalogram (EEG)
  • 1.2.6. Event-related potentials (ERPs)
  • 1.2.7. The electrogastrogram (EGG)
  • 1.2.8. The phonocardiogram (PCG)
  • 1.2.9. The carotid pulse (CP)
  • 1.2.10. Signals from catheter-tip sensors
  • 1.2.11. The speech signal
  • 1.2.12. The vibromyogram (VMG)
  • 1.2.13. The vibroarthrogram (VAG)
  • 1.2.14. Oto-acoustic emission signals
  • 1.3. Objectives of Biomedical Signal Analysis
  • 1.4. Difficulties in Biomedical Signal Analysis
  • 1.5. Computer-aided Diagnosis
  • 1.6. Remarks
  • 1.7. Study Questions and Problems
  • 1.8. Laboratory Exercises and Projects
  • 2. Concurrent, Coupled, and Correlated Processes
  • 2.1. Problem Statement
  • 2.2. Illustration of the Problem with Case-studies
  • 2.2.1. The electrocardiogram and the phonocardiogram
  • 2.2.2. The phonocardiogram and the carotid pulse
  • 2.2.3. The ECG and the atrial electrogram
  • 2.2.4. Cardio-respiratory interaction
  • 2.2.5. The electromyogram and the vibromyogram
  • 2.2.6. The knee-joint and muscle vibration signals
  • 2.3. Application: Segmentation of the PCG
  • 2.4. Remarks
  • 2.5. Study Questions and Problems
  • 2.6. Laboratory Exercises and Projects
  • 3. Filtering for Removal of Artifacts
  • 3.1. Problem Statement
  • 3.1.1. Random noise, structured noise, and physiological interference
  • 3.1.2. Stationary versus nonstationary processes
  • 3.2. Illustration of the Problem with Case-studies
  • 3.2.1. Noise in event-related potentials
  • 3.2.2. High-frequency noise in the ECG
  • 3.2.3. Motion artifact in the ECG
  • 3.2.4. Power-line interference in ECG signals
  • 3.2.5. Maternal interference in fetal ECG
  • 3.2.6. Muscle-contraction interference in VAG signals
  • 3.2.7. Potential solutions to the problem
  • 3.3. Time-domain Filters
  • 3.3.1. Synchronized averaging
  • 3.3.2. Moving-average filters
  • 3.3.3. Derivative-based operators to remove low-frequency artifacts
  • 3.4. Frequency-domain Filters
  • 3.4.1. Removal of high-frequency noise: Butterworth lowpass filters
  • 3.4.2. Removal of low-frequency noise: Butterworth highpass filters
  • 3.4.3. Removal of periodic artifacts: Notch and comb filters
  • 3.5. Optimal Filtering: The Wiener Filter
  • 3.6. Adaptive Filters for Removal of Interference
  • 3.6.1. The adaptive noise canceler
  • 3.6.2. The least-mean-squares adaptive filter
  • 3.6.3. The recursive least-squares adaptive filter
  • 3.7. Selecting an Appropriate Filter
  • 3.8. Application: Removal of Artifacts in the ECG
  • 3.9. Application: Maternal - Fetal ECG
  • 3.10. Application: Muscle-contraction Interference
  • 3.11. Remarks
  • 3.12. Study Questions and Problems
  • 3.13. Laboratory Exercises and Projects
  • 4. Event Detection
  • 4.1. Problem Statement
  • 4.2. Illustration of the Problem with Case-studies
  • 4.2.1. The P, QRS, and T waves in the ECG
  • 4.2.2. The first and second heart sounds
  • 4.2.3. The dicrotic notch in the carotid pulse
  • 4.2.4. EEG rhythms, waves, and transients
  • 4.3. Detection of Events and Waves
  • 4.3.1. Derivative-based methods for QRS detection
  • 4.3.2. The Pan-Tompkins algorithm for QRS detection
  • 4.3.3. Detection of the dicrotic notch
  • 4.4. Correlation Analysis of EEG channels
  • 4.4.1. Detection of EEG rhythms
  • 4.4.2. Template matching for EEG spike-and-wave detection
  • 4.5. Cross-spectral Techniques
  • 4.5.1. Coherence analysis of EEG channels
  • 4.6. The Matched Filter
  • 4.6.1. Detection of EEG spike-and-wave complexes
  • 4.7. Detection of the P Wave
  • 4.8. Homomorphic Filtering
  • 4.8.1. Generalized linear filtering
  • 4.8.2. Homomorphic deconvolution
  • 4.8.3. Extraction of the vocal-tract response
  • 4.9. Application: ECG Rhythm Analysis
  • 4.10. Application: Identification of Heart Sounds
  • 4.11. Application: Detection of the Aortic Component of S2
  • 4.12. Remarks
  • 4.13. Study Questions and Problems
  • 4.14. Laboratory Exercises and Projects
  • 5. Waveshape and Waveform Complexity
  • 5.1. Problem Statement
  • 5.2. Illustration of the Problem with Case-studies
  • 5.2.1. The QRS complex in the case of bundle-branch block
  • 5.2.2. The effect of myocardial ischemia and infarction on QRS waveshape
  • 5.2.3. Ectopic beats
  • 5.2.4. EMG interference pattern complexity
  • 5.2.5. PCG intensity patterns
  • 5.3. Analysis of Event-related Potentials
  • 5.4. Morphological Analysis of ECG Waves
  • 5.4.1. Correlation coefficient
  • 5.4.2. The minimum-phase correspondent and signal length
  • 5.4.3. ECG waveform analysis
  • 5.5. Envelope Extraction and Analysis
  • 5.5.1. Amplitude demodulation
  • 5.5.2. Synchronized averaging of PCG envelopes
  • 5.5.3. The envelogram
  • 5.6. Analysis of Activity
  • 5.6.1. The root mean-squared value
  • 5.6.2. Zero-crossing rate
  • 5.6.3. Turns count
  • 5.6.4. Form factor
  • 5.7. Application: Normal and Ectopic ECG Beats
  • 5.8. Application: Analysis of Exercise ECG
  • 5.9. Application: Analysis of Respiration
  • 5.10. Application: Correlates of Muscular Contraction
  • 5.11. Remarks
  • 5.12. Study Questions and Problems
  • 5.13. Laboratory Exercises and Projects
  • 6. Frequency-domain Characterization
  • 6.1. Problem Statement
  • 6.2. Illustration of the Problem with Case-studies
  • 6.2.1. The effect of myocardial elasticity on heart sound spectra
  • 6.2.2. Frequency analysis of murmurs to diagnose valvular defects
  • 6.3. The Fourier Spectrum
  • 6.4. Estimation of the Power Spectral Density Function
  • 6.4.1. The periodogram
  • 6.4.2. The need for averaging
  • 6.4.3. The use of windows: Spectral resolution and leakage
  • 6.4.4. Estimation of the autocorrelation function
  • 6.4.5. Synchronized averaging of PCG spectra
  • 6.5. Measures Derived from PSDs
  • 6.5.1. Moments of PSD functions
  • 6.5.2. Spectral power ratios
  • 6.6. Application: Evaluation of Prosthetic Valves
  • 6.7. Remarks
  • 6.8. Study Questions and Problems
  • 6.9. Laboratory Exercises and Projects
  • 7. Modeling Biomedical Systems
  • 7.1. Problem Statement
  • 7.2. Illustration of the Problem
  • 7.2.1. Motor-unit firing patterns
  • 7.2.2. Cardiac rhythm
  • 7.2.3. Formants and pitch in speech
  • 7.2.4. Patello-femoral crepitus
  • 7.3. Point Processes
  • 7.4. Parametric System Modeling
  • 7.5. Autoregressive or All-pole Modeling
  • 7.5.1. Spectral matching and parameterization
  • 7.5.2. Optimal model order
  • 7.5.3. Relationship between AR and cepstral coefficients
  • 7.6. Pole-zero Modeling
  • 7.6.1. Sequential estimation of poles and zeros
  • 7.6.2. Iterative system identification
  • 7.6.3. Homomorphic prediction and modeling
  • 7.7. Electromechanical Models of Signal Generation
  • 7.7.1. Sound generation in coronary arteries
  • 7.7.2. Sound generation in knee joints
  • 7.8. Application: Heart-rate Variability
  • 7.9. Application: Spectral Modeling and Analysis of PCG Signals
  • 7.10. Application: Coronary Artery Disease
  • 7.11. Remarks
  • 7.12. Study Questions and Problems
  • 7.13. Laboratory Exercises and Projects
  • 8. Analysis of Nonstationary Signals
  • 8.1. Problem Statement
  • 8.2. Illustration of the Problem with Case-studies
  • 8.2.1. Heart sounds and murmurs
  • 8.2.2. EEG rhythms and waves
  • 8.2.3. Articular cartilage damage and knee-joint vibrations
  • 8.3. Time-variant Systems
  • 8.3.1. Characterization of nonstationary signals and dynamic systems
  • 8.4. Fixed Segmentation
  • 8.4.1. The short-time Fourier transform
  • 8.4.2. Considerations in short-time analysis
  • 8.5. Adaptive Segmentation
  • 8.5.1. Spectral error measure
  • 8.5.2. ACF distance
  • 8.5.3. The generalized likelihood ratio
  • 8.5.4. Comparative analysis of the ACF, SEM, and GLR methods
  • 8.6. Use of Adaptive Filters for Segmentation
  • 8.6.1. Monitoring the RLS filter
  • 8.6.2. The RLS lattice filter
  • 8.7. Application: Adaptive Segmentation of EEG Signals
  • 8.8. Application: Adaptive Segmentation of PCG Signals
  • 8.9. Application: Time-varying Analysis of Heart-rate Variability
  • 8.10. Remarks
  • 8.11. Study Questions and Problems
  • 8.12. Laboratory Exercises and Projects
  • 9. Pattern Classification and Diagnostic Decision
  • 9.1. Problem Statement
  • 9.2. Illustration of the Problem with Case-studies
  • 9.2.1. Diagnosis of bundle-branch block
  • 9.2.2. Normal or ectopic ECG beat?
  • 9.2.3. Is there an alpha rhythm?
  • 9.2.4. Is a murmur present?
  • 9.3. Pattern Classification
  • 9.4. Supervised Pattern Classification
  • 9.4.1. Discriminant and decision functions
  • 9.4.2. Distance functions
  • 9.4.3. The nearest-neighbor rule
  • 9.5. Unsupervised Pattern Classification
  • 9.5.1. Cluster-seeking methods
  • 9.6. Probabilistic Models and Statistical Decision
  • 9.6.1. Likelihood functions and statistical decision
  • 9.6.2. Bayes classifier for normal patterns
  • 9.7. Logistic Regression Analysis
  • 9.8. The Training and Test Steps
  • 9.8.1. The leave-one-out method
  • 9.9. Neural Networks
  • 9.10. Measures of Diagnostic Accuracy and Cost
  • 9.10.1. Receiver operating characteristics
  • 9.10.2. McNemar's test of symmetry
  • 9.11. Reliability of Classifiers and Decisions
  • 9.12. Application: Normal versus Ectopic ECG Beats
  • 9.13. Application: Detection of Knee-joint Cartilage Pathology
  • 9.14. Remarks
  • 9.15. Study Questions and Problems
  • 9.16. Laboratory Exercises and Projects
  • References
  • Index