Minimally invasive medical technology /

Saved in:
Bibliographic Details
Imprint:Bristol [England] ; Philadelphia : Institute of Physics Pub., c2001.
Description:xviii, 316 p. : ill. ; 24 cm.
Language:English
Series:Series in medical physics
Subject:Endoscopic surgery -- Technological innovations.
Biomedical engineering.
Surgical instruments and apparatus -- Design and construction.
Medical physics.
Biomedical engineering.
Endoscopic surgery -- Technological innovations.
Medical physics.
Surgical instruments and apparatus -- Design and construction.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4511924
Hidden Bibliographic Details
Other authors / contributors:Webster, John G., 1932-
ISBN:0750307331 (hbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Chemical Sensors
  • 1.1. Objects of measurement
  • 1.1.1. Objects of chemical measurement
  • 1.1.2. Requirement of chemical-measurement sensor
  • 1.1.3. Placement of sensors
  • 1.2. Electrochemical sensors
  • 1.2.1. Electrode potential
  • 1.2.2. Potentiometric sensors
  • 1.2.3. Amperometric measurement
  • 1.2.4. Electrochemical gas sensors
  • 1.3. Fiber-optic chemical sensors
  • 1.3.1. Spectrophotometric analysis and Beer's Law
  • 1.3.2. Fiber-optic chemical sensors
  • 1.3.3. Optical oximetry
  • 1.4. Other transducers
  • 1.4.1. Acoustic bulk-wave device
  • 1.4.2. Acoustic surface-wave device
  • 1.4.3. Thermal measurement
  • 1.5. Biosensors
  • 1.5.1. Enzyme-based biosensors
  • 1.5.2. Immunosensors
  • 1.5.3. Microbial sensors
  • Problems
  • References
  • 2. Neuro-Electric Signal Recording
  • 2.1. Neuro-electric signal
  • 2.1.1. Resting potential
  • 2.1.2. Action potential
  • 2.2. Conventional electrodes
  • 2.2.1. Metal microelectrode
  • 2.2.2. Micropipette electrode
  • 2.3. Silicon-based microelectrodes
  • Problems
  • References
  • 3. Pressure Sensors
  • 3.1. Pressure measurement
  • 3.2. Indirect pressure measurement
  • 3.3. Direct measurement
  • 3.3.1. Diaphragm for pressure sensor
  • 3.3.2. Strain-gage pressure sensor
  • 3.3.3. Capacitive pressure sensor
  • 3.3.4. Fiber-optic pressure sensor
  • 3.4. Catheter-type pressure sensors
  • 3.4.1. Catheter-sensor pressure sensor
  • 3.4.2. Catheter-tip pressure sensor
  • Problems
  • References
  • 4. X-Ray-Based Imaging
  • 4.1. X-ray production
  • 4.1.1. The X-ray beam
  • 4.1.2. X-ray tubes
  • 4.1.3. Anode design
  • 4.2. Interaction of X-rays with matter
  • 4.2.1. Scattering
  • 4.2.2. Harmful effects of exposure
  • 4.3. X-ray detection
  • 4.3.1. Screen-film detectors
  • 4.3.2. Image intensifier
  • 4.3.3. Digital detectors
  • 4.4. Image quality
  • 4.5. X-ray applications
  • 4.5.1. X-ray mammography
  • 4.5.2. Fluoroscopy
  • 4.5.3. X-ray angiography
  • 4.6. Computed tomography
  • 4.6.1. Scanner technology
  • 4.6.2. Filtered back-projection
  • 4.6.3. Spiral CT
  • Problems
  • References
  • 5. Nuclear Medicine
  • 5.1. Radionuclides
  • 5.2. Gamma detection
  • 5.3. Single-photon emission computed tomography
  • 5.4. Positron emission tomography
  • 5.4.1. Event detection
  • 5.4.2. Uses of PET
  • 5.5. Image quality
  • Problems
  • References
  • 6. MRI
  • 6.1. MR physics
  • 6.1.1. Precession
  • 6.1.2. Excitation
  • 6.1.3. Relaxation
  • 6.2. Imaging principles
  • 6.2.1. Selective excitation
  • 6.2.2. Spatial encoding
  • 6.2.3. Pulse sequences
  • 6.3. Image quality
  • 6.4. MR angiography
  • 6.4.1. Noncontrast-enhanced methods
  • 6.4.2. Contrast-enhanced MR angiography
  • 6.5. Diffusion-weighted and functional MRI
  • 6.6. MR spectroscopic imaging
  • Problems
  • References
  • 7. Biomagnetic and Bioelectric Imaging
  • 7.1. Bioelectromagnetism
  • 7.1.1. Electroencephalography
  • 7.1.2. Magnetoencephalography
  • 7.1.3. Electrocardiography
  • 7.1.4. Magnetocardiography
  • 7.1.5. Biosuceptometry
  • 7.2. Image generation
  • 7.2.1. Heart bioelectrical or biomagnetic imaging
  • 7.2.2. Brain bioelectric or biomagnetic imaging
  • 7.2.3. The inverse problem
  • 7.2.4. Space and temporal resolution
  • 7.3. Bioeffects
  • Problems
  • References
  • 8. Ultrasound
  • 8.1. Physical principles of ultrasound
  • 8.1.1. Sound waves in sonography
  • 8.1.2. Speed, wavelength and frequency
  • 8.1.3. Sound intensity
  • 8.1.4. Sound behavior and its interaction with objects
  • 8.2. Transducers
  • 8.2.1. Transducer resonant frequency
  • 8.2.2. Transducer assembly head
  • 8.2.3. Types of transducer assembly head
  • 8.2.4. Sound beams
  • 8.2.5. Transducer beamforming
  • 8.3. Ultrasound image generation
  • 8.3.1. Ultrasound resolution
  • 8.3.2. Artifacts
  • 8.4. Doppler ultrasound
  • 8.4.1. Continuous wave Doppler ultrasound
  • 8.4.2. Pulsed Doppler ultrasound
  • 8.4.3. Duplex ultrasound
  • 8.4.4. Color flow Doppler ultrasound
  • 8.5. Three dimensional (3D) ultrasound
  • 8.6. Bioeffects
  • Problems
  • References
  • 9. Multimodal Imaging
  • 9.1. Multimodal imaging versus image fusion
  • 9.2. Multimodal imaging
  • 9.2.1. Anatomical data and the volume conductor model
  • 9.2.2. Source modelling
  • 9.2.3. Source localization
  • 9.2.4. Linearly constrained minimum variance (LMCV) spatial filters
  • 9.3. Image fusion
  • 9.3.1. Virtual colonoscopy
  • 9.3.2. Brain functionality with CT and SPECT
  • 9.3.3. Biomagnetic and bioelectric imaging
  • 9.4. Bioeffects
  • Problems
  • References
  • 10. General Techniques and Applications
  • 10.1. Minimally invasive cardiovascular surgery
  • 10.1.1. Minimally invasive direct coronary artery bypass
  • 10.1.2. PTMR
  • 10.1.3. Percutaneous transluminal coronary angioplasty
  • 10.2. Minimally invasive brain surgery
  • 10.2.1. Endoscopic neurosurgery and endoscope-assisted microneurosurgery
  • 10.2.2. Image-guided stereotaxic brain surgery
  • 10.3. Minimally invasive ophthalmalic surgery
  • 10.3.1. Laser glaucoma surgery
  • 10.3.2. Laser corneal reshaping surgery
  • Problems
  • References
  • 11. Endoscopic Surgery
  • 11.1. Endoscopes
  • 11.1.1. Rigid endoscope
  • 11.1.2. Flexible telescope
  • 11.1.3. New developments and perspectives of endoscopic technology
  • 11.2. Mechanical surgical tools for endoscopic surgery
  • 11.2.1. Endoscopic surgical tools for dissection, ligation and suturing
  • 11.2.2. Haptic feedback for endoscopic surgery
  • 11.3. Endoscopic electrosurgery, ultrasonic surgery and laser surgery
  • 11.3.1. Electrosurgical technologies in endoscopic surgery
  • 11.3.2. Ultrasonic surgery and harmonic scalpel
  • 11.3.3. Laser surgery
  • 11.4. The basic procedure and equipment set-up for laparoscopic surgery
  • 11.4.1. Basic procedures of laparoscopic surgery
  • 11.4.2. Equipment set-ups for laparoscopic surgery
  • 11.4.3. Descriptions of some laparoscopic equipment and surgical tools
  • 11.4.4. New trends and perspectives of laparoscopic technology
  • 11.5. Arthroscopy
  • 11.5.1. Instruments
  • 11.5.2. Arthroscopic knee surgery
  • Problems
  • References
  • 12. Image-Guided Surgery
  • 12.1. Image registration
  • 12.1.1. Rigid body transformation
  • 12.1.2. Nonrigid body transformation
  • 12.1.3. Extrinsic image registration
  • 12.1.4. Intrinsic image registration
  • 12.1.5. Image fusion
  • 12.2. Surgical planning
  • 12.2.1. Generic atlas models
  • 12.2.2. Visualization
  • 12.3. Stereotactic surgeries
  • 12.3.1. Frame-based stereotactic systems
  • 12.3.2. Frameless stereotactic systems
  • 12.4. Intraoperative endoscopy and microscopy
  • 12.4.1. Endoscopy
  • 12.4.2. Microscopy
  • 12.5. X-ray fluoroscopy
  • 12.6. Intraoperative computed tomography
  • 12.7. Intraoperative ultrasound
  • 12.8. Intraoperative magnetic resonance imaging
  • 12.8.1. Scanner design
  • 12.8.2. Instrumentation compatibility
  • 12.8.3. Instrument tracking
  • 12.8.4. Data acquisition and reconstruction
  • Problems
  • References
  • 13. Virtual and Augmented Reality in Medicine
  • 13.1. Virtual environment
  • 13.1.1. VR sensors
  • 13.1.2. VR actuators
  • 13.1.3. Augmented reality
  • 13.2. Teaching
  • 13.3. Diagnosis and surgical planning
  • 13.3.1. Diagnosis
  • 13.3.2. Surgical planning
  • 13.4. VR simulations
  • 13.4.1. Surgical simulation
  • 13.4.2. Simulating on patient-specific data
  • 13.4.3. Tissue modelling
  • 13.5. Image guidance
  • 13.6. Telesurgery
  • Problems
  • References
  • 14. Minimally Invasive Surgical Robotics
  • 14.1. Introduction to robotics
  • 14.1.1. Components of a robotic system
  • 14.1.2. Conceptual models of robots
  • 14.1.3. Robotic control
  • 14.1.4. Robotic actuators
  • 14.1.5. Robotic sensors
  • 14.2. Medical robotics
  • 14.2.1. Robotic endoscopes
  • 14.2.2. Gastrointestinal endoscopy
  • 14.2.3. Colonoscopy
  • 14.2.4. Laparoscopy
  • 14.2.5. Neurosurgery
  • 14.2.6. Eye surgery
  • 14.2.7. Orthopedic surgery
  • 14.2.8. Radiosurgery
  • 14.2.9. Ear surgery
  • 14.3. Robotics in telesurgery
  • 14.4. Safety
  • Problems
  • References
  • 15. Ablation
  • 15.1. Significance and present applications
  • 15.2. Radio-frequency ablation
  • 15.2.1. Background
  • 15.2.2. Mechanisms of RF energy-induced tissue injury
  • 15.2.3. Designs of RF ablation system
  • 15.2.4. Advantages and limitations
  • 15.2.5. Applications of radio-frequency ablation
  • 15.2.6. Research
  • 15.3. Laser ablation
  • 15.3.1. Background
  • 15.3.2. Laser-tissue interactions
  • 15.3.3. Advantages and limitations
  • 15.3.4. Applications
  • 15.3.5. Current research
  • 15.4. Ultrasound ablation
  • 15.4.1. High-intensity focused ultrasound: background
  • 15.4.2. Advantages and limitations
  • 15.4.3. Applications
  • 15.4.4. Research
  • 15.5. Cryoablation
  • 15.5.1. Background
  • 15.2.2. Mechanism of tissue damage
  • 15.5.3. Designs of cryoablation systems
  • 15.5.4. Advantages and limitations
  • 15.5.5. Applications of cryoablation
  • 15.5.6. Research
  • 15.6. Microwave ablation
  • 15.6.1. Background
  • 15.6.2. Designs
  • 15.6.3. Advantages and limitations
  • 15.6.4. Applications
  • 15.6.5. Research
  • 15.7. Chemical ablation
  • 15.7.1. Applications of chemical ablation
  • Problems
  • References
  • 16. Neuromuscular Stimulation
  • 16.1. Stimulating nerve
  • 16.1.1. Brain stimulation
  • 16.1.2. Diaphragm stimulation
  • 16.1.3. Bladder stimulation
  • 16.2. Cardiac pacemakers
  • 16.2.1. Lead
  • 16.2.2. Power source
  • 16.2.3. Sensing
  • 16.2.4. Control
  • 16.2.5. Pulse-generating unit
  • 16.2.6. Pacing synchrony
  • 16.3. Implantable cardioverter-defibrillators
  • Problems
  • References
  • 17. Helical Tomotherapy
  • 17.1. Introduction
  • 17.2. Processes
  • 17.2.1. Optimization
  • 17.2.2. Megavoltage computed tomography
  • 17.2.3. Registration in projection space
  • 17.2.4. Delivery modification
  • 17.2.5. Delivery verification
  • 17.2.6. Dose reconstruction
  • 17.3. Conclusions
  • Problems
  • References
  • 18. Drug Delivery
  • 18.1. Noninvasive drug delivery
  • 18.1.1. Respiratory delivery
  • 18.1.2. Transdermal delivery
  • 18.1.3. Oral controlled-release delivery
  • 18.1.4. Other noninvasive routes of administration
  • 18.2. Controlled-release drug delivery
  • 18.2.1. Controlled-release delivery
  • 18.2.2. Targeted-release delivery
  • 18.3. Controlled-dose delivery
  • 18.3.1. Implantable systems and micropumps
  • 18.3.2. Feedback systems
  • Problems
  • References
  • Index