Raman scattering in materials science /
Saved in:
Imprint: | Berlin ; New York : Springer, c2000. |
---|---|
Description: | xvii, 492 p. : ill. ; 24 cm. |
Language: | English |
Series: | Springer series in materials science, 0933-033X ; 42 Springer series in materials science ; v. 42. |
Subject: | Raman spectroscopy. Materials -- Spectra. Materials -- Spectra. Raman spectroscopy. |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4340783 |
Table of Contents:
- 1. Overview of Phonon Raman Scattering in Solids
- 1.3. Two-Phonon Scattering
- 6.2.3. Palladium Oxide
- 6.2.4. Rhodium Oxides
- 6.2.5. Ruthenium Oxide
- 6.2.6. Mixed Oxides
- 6.3. Oxygen Storage Materials
- 6.4. Adsorbed Species
- 6.4.1. Oxides of Nitrogen
- 6.4.2. Oxides of Sulfur
- 6.5. Particle-Size Effects
- 6.6. Quantitative Analyses
- 1.4. Phonons in Semiconductor Alloys
- 6.7. Summary and Outlook
- References
- VII. Historical Perspective of Raman Spectroscopyin Catalysis
- References
- 7. Raman Scattering Spectroscopy and Analysesof III-V Nitride-Based Materials
- 7.1. Experimental Considerations for Raman Scattering of Wide Band-Gap Semiconductors
- 7.2. Raman Scattering of GaN, AlN, and InN Films and Crystallites
- 7.2.1. Raman Tensors and Structure Identification of GaN, AlN, and InN
- 7.2.2. Wurtzite and Zincblende Phases of GaN
- 7.2.3. Wurtzite and Zincblende Structure of AlN and InN
- 1.5. Impurity Centers and Other Defects
- 7.3. Stress Analysis and Substrate Issues for Epitaxial Growth
- 7.3.1. Stress Analysis of GaN Films
- 7.3.2. Stress Analysis in WZ-AlN
- 7.4. Raman Analysis of the Quasi-Modes in AlN
- 7.5. Phonon-Plasmon Interaction in GaN Films and Crystallites
- 7.6. Isotopic Effects and Phonon Lifetimes in the Wurtzite Materials
- 7.7. Wide Band-Gap Alloys
- 7.8. Concluding Remarks
- References
- 8. Raman Scattering in Fullerenesand Related Carbon-Based Materials
- 1.6. Phonons in Amorphous Materials
- 8.1. Graphite Related Materials
- 8.1.1. Single Crystal Graphite and 2D Graphene Layers
- 8.1.2. Raman Spectra of Disordered sp 2 Carbons
- 8.2. Introduction to Fullerene Materials
- 8.2.1. Mode Classification in Fullerene Molecules
- 8.2.2. C 60 Intra-Molecular Modes
- 8.2.3. Higher-Order Raman Modes in C 60
- 8.2.4. Perturbations to the Raman Spectra
- 8.2.5. Vibrational Spectra for Phototransformed Fullerenes
- 8.2.6. Inter-Molecular Modes
- 1.7. Structural Phase Transitions: Effects of Temperature, Pressure and Composition
- 8.2.7. Vibrational Modes in Doped C 60 -based Solids
- 8.2.8. Vibrational Spectra for C 70 and Higher Fullerenes
- 8.3. Raman Scattering in Carbon Nanotubes
- 8.3.1. Structure of Carbon Nanotubes
- 8.3.2. Nanotube Phonon Modes
- 8.3.3. Raman Spectra of Single-Walled Carbon Nanotubes
- 8.3.4. Raman Scattering Studies at High Pressure
- 8.3.5. Charge Transfer Effects in Single-Wall Carbon Nanotubes
- 8.4. Summary
- References
- 1.8. Conclusions
- VIII. A Case History in Raman and Brillouin Scattering: Lattice Vibrations and Electronic Excitations in Diamond
- References
- 9. Raman Spectroscopic Studies of Polymer Structure
- 9.1. Overview of Structural Characterization
- 9.1.1. Amorphous Polymers: Low Frequency Observations
- 9.1.2. Solid State Properties
- 9.2. Polymer Anisotropy
- 9.2.1. Motivation
- 9.2.2. Partially Oriented Systems
- 9.2.3. Definition of Orientation Function
- References
- 9.3. Long-Range Order and Disorder in Polymers
- 9.3.1. Initial Observations Made for Models and Polymers
- 9.3.2. Other LAM Observations
- 9.3.3. Applications of LAM to Polymer Structural Characterization
- 9.4. Fermi Resonance Interaction and Its Application to Structural Analysis
- 9.5. Disordered States
- 9.5.1. Normal Coordinate Approach
- 9.5.2. Molecular Dynamics Approach
- 9.5.3. Examples
- References
- I. The Effect of a Surface Space-Charge Electric Field on Raman Scattering by Optical Phonons
- IX. C.V. Raman: A Personal Note
- References
- 10. Raman Scattering in Perovskite Manganites
- 10.1. Manganite Structure and Selection Rules for Optical Vibrational Modes
- 10.2. Doped Crystals (x > 0)
- 10.3. Undoped Crystals (x = 0)
- 10.4. Films
- 10.5. Summary
- References
- X. Raman Scattering from Perovskite Ferroelectrics
- References
- References
- Index
- 2. Raman Instrumentation
- 1.1. Light Scattering Mechanisms and Selection Rules
- 2.1. Raman MeasurementRegime
- 2.1.1. Spontaneous, Non-resonance Raman Spectral Measurements
- 2.1.2. Spontaneous, Resonance Raman Spectral Measurements
- 2.1.3. Nonlinear Raman Measurements
- 2.2. Choice of Raman Excitation Wavelength
- 2.2.1. CW Lasers
- 2.2.2. Pulsed Lasers
- 2.3. Optical Methods for Rayleigh Rejection
- 2.3.1. Holographic Notch Filter
- 2.3.2. Dielectric Edge Filters
- 1.1.1. Conservation Laws
- 2.3.3. Pre-monochromator Rayleigh Rejection
- 2.4. Raman Spectrometers
- 2.4.1. Dispersive Raman Spectrometers
- 2.4.2. FT-Raman Spectrometers
- 2.4.3. Detectors
- 2.4.4. Imaging Raman Spectrometers
- 2.5. Examples of New Raman Instruments for Materials Characterization
- 2.5.1. UV Raman Microspectrometer for CVD Diamond Studies
- 2.5.2. UV Raman Instrument for in situ Studies of CVD Diamond Growth
- 2.6. Conclusions
- 1.1.2. Kinematics: Wave Vector Conservation
- References
- 3. Characterization of Bulk Semiconductors Using Raman Spectroscopy
- 3.1. Inelastic Light Scattering by Phonons in Semiconductors
- 3.1.1. Phonons in Semiconductors
- 3.1.2. Anharmonic Effects
- 3.1.3. Raman Scattering by Phonons
- 3.2. Semiconductor Characterization
- 3.2.1. Crystal Orientation
- 3.2.2. TemperatureMonitoring
- 3.2.3. StressMeasurements
- 1.1.3. Kinematics: Breakdown of Wave Vector Conservation
- 3.2.4. Impurities
- 3.2.5. Alloying
- 3.3. Conclusion
- References
- II. Finding the Stress from the Raman Shifts: A Case Study
- References
- III. Brillouin Scattering from Semiconductors
- References
- 4. Raman Scattering in Semiconductor Heterostructures
- 4.1. Electrons in Semiconductor Heterostructures
- 1.1.4. Light Scattering Susceptibilities
- 4.2. Resonant Raman Scattering
- 4.3. Kinematics
- 4.4. Vibrational Raman Scattering in Semiconductor Heterostructures
- 4.4.1. Phonons in Semiconductor Quantum Wells
- 4.4.2. Phonons as a Probe of Interface Roughness in a Quantum Well
- 4.5. Electronic Raman Scattering in Semiconductor Heterostructures
- 4.5.1. Shallow Impurities
- 4.5.2. Quasi-Two-Dimensional Electron Gas
- 4.6. Conclusion
- References
- 1.1.5. Enumeration of Raman Active Modes
- IV. Raman Scattering Enhancement by Optical Confinementin Semiconductor Planar Microcavities
- References
- 5. Raman Scattering in High-T c Superconductors: Phonons, Electrons, and Magnons
- 5.1. High-T c Superconductors: Chemical Composition and Crystal Structure
- 5.2. Raman Scattering by Phonons in High-T c Superconductors
- 5.2.1. Vibrational Frequencies and Eigenvectors
- 5.2.2. Raman Intensities, Raman Tensors
- 5.2.3. The Phases of the Raman Tensors
- 5.3. Scattering by Intraband Electronic Excitations
- 5.3.1. Normal Metals
- 1.1.6. Stokes and Anti-Stokes Scattering Intensities
- 5.3.2. Scattering in the Superconducting State
- 5.4. Electron-Phonon Interaction
- 5.5. Crystal Field Transitions Between f-Electron Levels
- 5.6. Light Scattering by Magnons in HTSC and Their Antiferromagnetic Parent Compounds
- 5.6.1. Antiferromagnetic Structures in the Underdoped Parent Compounds
- 5.6.2. Introduction to Light Scattering by Magnons in Antiferromagnets
- 5.6.3. Electronic Structure of the CuO 2 Antiferromagnetic Insulator and the Mechanism of Scattering by Two Magnons
- 5.6.4. Lineshape of Two-Magnon Raman Scattering in the Insulating HTSC Phases
- 5.6.5. Resonant Raman Scattering by Magnons
- 5.6.6. Scattering by Magnetic Fluctuations in Doped (Superconducting) Cuprates
- 1.2. Resonant Light Scattering and Forbidden Effects
- References
- V. Thoughts About Raman Scattering from Superconductors
- References
- VI. Two-Magnon Inelastic Light Scattering
- References
- 6. Raman Applications in Catalystsfor Exhaust-Gas Treatment
- 6.1. Supports and Substrates
- 6.2. Oxides of the Pt-Group Metals
- 6.2.1. Platinum Oxides
- 6.2.2. Iridium and Osmium Oxides