Raman scattering in materials science /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2000.
Description:xvii, 492 p. : ill. ; 24 cm.
Language:English
Series:Springer series in materials science, 0933-033X ; 42
Springer series in materials science ; v. 42.
Subject:Raman spectroscopy.
Materials -- Spectra.
Materials -- Spectra.
Raman spectroscopy.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4340783
Hidden Bibliographic Details
Other authors / contributors:Weber, Willes H., 1942-
Merlin, R. (Roberto), 1950-
ISBN:3540672230 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Overview of Phonon Raman Scattering in Solids
  • 1.3. Two-Phonon Scattering
  • 6.2.3. Palladium Oxide
  • 6.2.4. Rhodium Oxides
  • 6.2.5. Ruthenium Oxide
  • 6.2.6. Mixed Oxides
  • 6.3. Oxygen Storage Materials
  • 6.4. Adsorbed Species
  • 6.4.1. Oxides of Nitrogen
  • 6.4.2. Oxides of Sulfur
  • 6.5. Particle-Size Effects
  • 6.6. Quantitative Analyses
  • 1.4. Phonons in Semiconductor Alloys
  • 6.7. Summary and Outlook
  • References
  • VII. Historical Perspective of Raman Spectroscopyin Catalysis
  • References
  • 7. Raman Scattering Spectroscopy and Analysesof III-V Nitride-Based Materials
  • 7.1. Experimental Considerations for Raman Scattering of Wide Band-Gap Semiconductors
  • 7.2. Raman Scattering of GaN, AlN, and InN Films and Crystallites
  • 7.2.1. Raman Tensors and Structure Identification of GaN, AlN, and InN
  • 7.2.2. Wurtzite and Zincblende Phases of GaN
  • 7.2.3. Wurtzite and Zincblende Structure of AlN and InN
  • 1.5. Impurity Centers and Other Defects
  • 7.3. Stress Analysis and Substrate Issues for Epitaxial Growth
  • 7.3.1. Stress Analysis of GaN Films
  • 7.3.2. Stress Analysis in WZ-AlN
  • 7.4. Raman Analysis of the Quasi-Modes in AlN
  • 7.5. Phonon-Plasmon Interaction in GaN Films and Crystallites
  • 7.6. Isotopic Effects and Phonon Lifetimes in the Wurtzite Materials
  • 7.7. Wide Band-Gap Alloys
  • 7.8. Concluding Remarks
  • References
  • 8. Raman Scattering in Fullerenesand Related Carbon-Based Materials
  • 1.6. Phonons in Amorphous Materials
  • 8.1. Graphite Related Materials
  • 8.1.1. Single Crystal Graphite and 2D Graphene Layers
  • 8.1.2. Raman Spectra of Disordered sp 2 Carbons
  • 8.2. Introduction to Fullerene Materials
  • 8.2.1. Mode Classification in Fullerene Molecules
  • 8.2.2. C 60 Intra-Molecular Modes
  • 8.2.3. Higher-Order Raman Modes in C 60
  • 8.2.4. Perturbations to the Raman Spectra
  • 8.2.5. Vibrational Spectra for Phototransformed Fullerenes
  • 8.2.6. Inter-Molecular Modes
  • 1.7. Structural Phase Transitions: Effects of Temperature, Pressure and Composition
  • 8.2.7. Vibrational Modes in Doped C 60 -based Solids
  • 8.2.8. Vibrational Spectra for C 70 and Higher Fullerenes
  • 8.3. Raman Scattering in Carbon Nanotubes
  • 8.3.1. Structure of Carbon Nanotubes
  • 8.3.2. Nanotube Phonon Modes
  • 8.3.3. Raman Spectra of Single-Walled Carbon Nanotubes
  • 8.3.4. Raman Scattering Studies at High Pressure
  • 8.3.5. Charge Transfer Effects in Single-Wall Carbon Nanotubes
  • 8.4. Summary
  • References
  • 1.8. Conclusions
  • VIII. A Case History in Raman and Brillouin Scattering: Lattice Vibrations and Electronic Excitations in Diamond
  • References
  • 9. Raman Spectroscopic Studies of Polymer Structure
  • 9.1. Overview of Structural Characterization
  • 9.1.1. Amorphous Polymers: Low Frequency Observations
  • 9.1.2. Solid State Properties
  • 9.2. Polymer Anisotropy
  • 9.2.1. Motivation
  • 9.2.2. Partially Oriented Systems
  • 9.2.3. Definition of Orientation Function
  • References
  • 9.3. Long-Range Order and Disorder in Polymers
  • 9.3.1. Initial Observations Made for Models and Polymers
  • 9.3.2. Other LAM Observations
  • 9.3.3. Applications of LAM to Polymer Structural Characterization
  • 9.4. Fermi Resonance Interaction and Its Application to Structural Analysis
  • 9.5. Disordered States
  • 9.5.1. Normal Coordinate Approach
  • 9.5.2. Molecular Dynamics Approach
  • 9.5.3. Examples
  • References
  • I. The Effect of a Surface Space-Charge Electric Field on Raman Scattering by Optical Phonons
  • IX. C.V. Raman: A Personal Note
  • References
  • 10. Raman Scattering in Perovskite Manganites
  • 10.1. Manganite Structure and Selection Rules for Optical Vibrational Modes
  • 10.2. Doped Crystals (x > 0)
  • 10.3. Undoped Crystals (x = 0)
  • 10.4. Films
  • 10.5. Summary
  • References
  • X. Raman Scattering from Perovskite Ferroelectrics
  • References
  • References
  • Index
  • 2. Raman Instrumentation
  • 1.1. Light Scattering Mechanisms and Selection Rules
  • 2.1. Raman MeasurementRegime
  • 2.1.1. Spontaneous, Non-resonance Raman Spectral Measurements
  • 2.1.2. Spontaneous, Resonance Raman Spectral Measurements
  • 2.1.3. Nonlinear Raman Measurements
  • 2.2. Choice of Raman Excitation Wavelength
  • 2.2.1. CW Lasers
  • 2.2.2. Pulsed Lasers
  • 2.3. Optical Methods for Rayleigh Rejection
  • 2.3.1. Holographic Notch Filter
  • 2.3.2. Dielectric Edge Filters
  • 1.1.1. Conservation Laws
  • 2.3.3. Pre-monochromator Rayleigh Rejection
  • 2.4. Raman Spectrometers
  • 2.4.1. Dispersive Raman Spectrometers
  • 2.4.2. FT-Raman Spectrometers
  • 2.4.3. Detectors
  • 2.4.4. Imaging Raman Spectrometers
  • 2.5. Examples of New Raman Instruments for Materials Characterization
  • 2.5.1. UV Raman Microspectrometer for CVD Diamond Studies
  • 2.5.2. UV Raman Instrument for in situ Studies of CVD Diamond Growth
  • 2.6. Conclusions
  • 1.1.2. Kinematics: Wave Vector Conservation
  • References
  • 3. Characterization of Bulk Semiconductors Using Raman Spectroscopy
  • 3.1. Inelastic Light Scattering by Phonons in Semiconductors
  • 3.1.1. Phonons in Semiconductors
  • 3.1.2. Anharmonic Effects
  • 3.1.3. Raman Scattering by Phonons
  • 3.2. Semiconductor Characterization
  • 3.2.1. Crystal Orientation
  • 3.2.2. TemperatureMonitoring
  • 3.2.3. StressMeasurements
  • 1.1.3. Kinematics: Breakdown of Wave Vector Conservation
  • 3.2.4. Impurities
  • 3.2.5. Alloying
  • 3.3. Conclusion
  • References
  • II. Finding the Stress from the Raman Shifts: A Case Study
  • References
  • III. Brillouin Scattering from Semiconductors
  • References
  • 4. Raman Scattering in Semiconductor Heterostructures
  • 4.1. Electrons in Semiconductor Heterostructures
  • 1.1.4. Light Scattering Susceptibilities
  • 4.2. Resonant Raman Scattering
  • 4.3. Kinematics
  • 4.4. Vibrational Raman Scattering in Semiconductor Heterostructures
  • 4.4.1. Phonons in Semiconductor Quantum Wells
  • 4.4.2. Phonons as a Probe of Interface Roughness in a Quantum Well
  • 4.5. Electronic Raman Scattering in Semiconductor Heterostructures
  • 4.5.1. Shallow Impurities
  • 4.5.2. Quasi-Two-Dimensional Electron Gas
  • 4.6. Conclusion
  • References
  • 1.1.5. Enumeration of Raman Active Modes
  • IV. Raman Scattering Enhancement by Optical Confinementin Semiconductor Planar Microcavities
  • References
  • 5. Raman Scattering in High-T c Superconductors: Phonons, Electrons, and Magnons
  • 5.1. High-T c Superconductors: Chemical Composition and Crystal Structure
  • 5.2. Raman Scattering by Phonons in High-T c Superconductors
  • 5.2.1. Vibrational Frequencies and Eigenvectors
  • 5.2.2. Raman Intensities, Raman Tensors
  • 5.2.3. The Phases of the Raman Tensors
  • 5.3. Scattering by Intraband Electronic Excitations
  • 5.3.1. Normal Metals
  • 1.1.6. Stokes and Anti-Stokes Scattering Intensities
  • 5.3.2. Scattering in the Superconducting State
  • 5.4. Electron-Phonon Interaction
  • 5.5. Crystal Field Transitions Between f-Electron Levels
  • 5.6. Light Scattering by Magnons in HTSC and Their Antiferromagnetic Parent Compounds
  • 5.6.1. Antiferromagnetic Structures in the Underdoped Parent Compounds
  • 5.6.2. Introduction to Light Scattering by Magnons in Antiferromagnets
  • 5.6.3. Electronic Structure of the CuO 2 Antiferromagnetic Insulator and the Mechanism of Scattering by Two Magnons
  • 5.6.4. Lineshape of Two-Magnon Raman Scattering in the Insulating HTSC Phases
  • 5.6.5. Resonant Raman Scattering by Magnons
  • 5.6.6. Scattering by Magnetic Fluctuations in Doped (Superconducting) Cuprates
  • 1.2. Resonant Light Scattering and Forbidden Effects
  • References
  • V. Thoughts About Raman Scattering from Superconductors
  • References
  • VI. Two-Magnon Inelastic Light Scattering
  • References
  • 6. Raman Applications in Catalystsfor Exhaust-Gas Treatment
  • 6.1. Supports and Substrates
  • 6.2. Oxides of the Pt-Group Metals
  • 6.2.1. Platinum Oxides
  • 6.2.2. Iridium and Osmium Oxides