Bibliographic Details

Physics of ice / Victor F. Petrenko and Robert W. Whitworth.

Author / Creator Petrenko, Victor F.
Imprint Oxford ; New York : Oxford University Press, 1999.
Description xi, 373 p. : ill. ; 25 cm.
Language English
Subject Ice.
Ice.
Format Print, Book
URL for this record http://pi.lib.uchicago.edu/1001/cat/bib/4069982
Other authors / contributors Whitworth, Robert W.
ISBN 0198518951
Notes Includes bibliographical references (p. [322]-366) and index.
Table of Contents:
  • 1. Introduction
  • 1.1. The importance of ice
  • 1.2. The physics of ice and the structure of the book
  • 1.3. The water molecule
  • 1.4. The hydrogen bond
  • 2. Ice Ih
  • 2.1. Introduction
  • 2.2. Crystal structure
  • 2.3. Zero-point entropy
  • 2.4. Lattice energy and hydrogen bonding
  • 2.5. The actual structure
  • 2.6. Summary
  • 3. Elastic, thermal, and lattice dynamical properties
  • 3.1. Introduction
  • 3.2. Elasticity
  • 3.3. Thermal properties
  • 3.4. Spectroscopy of lattice vibrations
  • 3.5. Modelling
  • 4. Electrical properties--theory
  • 4.1. Basics
  • 4.2. Frequency dependence of the Debye relaxation
  • 4.3. The static susceptibility x[subscript s]
  • 4.4. Protonic point defects
  • 4.5. Jaccard theory
  • 4.6. Ice with blocking electrodes
  • 4.7. Time constants
  • 4.8. Summary
  • 5. Electrical properties--experimental
  • 5.1. Introduction
  • 5.2. Techniques
  • 5.3. Pure ice
  • 5.4. Doped ice
  • 5.5. Charge exchange at ice-metal electrodes
  • 5.6. Space charge effects
  • 5.7. Injection and extraction of charge carriers
  • 5.8. Thermally stimulated depolarization
  • 6. Point defects
  • 6.1. Introduction
  • 6.2. Thermal equilibrium concentrations
  • 6.3. Diffusion and mobility
  • 6.4. Molecular defects
  • 6.5. Protonic point defects
  • 6.6. Nuclear magnetic resonance
  • 6.7. Muon spin rotation, relaxation, and resonance
  • 6.8. Chemical impurities
  • 6.9. Electronic defects
  • 6.10. Photoconductivity
  • 6.11. Review
  • 7. Dislocations and planar defects
  • 7.1. Introduction to dislocations
  • 7.2. Dislocations in the ice structure
  • 7.3. Direct observation of dislocations
  • 7.4. Dislocation mobility
  • 7.5. Electrical effects
  • 7.6. Stacking faults
  • 7.7. Grain boundaries
  • 8. Mechanical properties
  • 8.1. Introduction
  • 8.2. Plastic deformation of single crystals
  • 8.3. Plastic deformation of polycrystalline ice
  • 8.4. Brittle fracture of polycrystalline ice
  • 8.5. Summary
  • 9. Optical and electronic properties
  • 9.1. Introduction
  • 9.2. Propagation of electromagnetic waves in ice
  • 9.3. Infrared range
  • 9.4. Visible optical range--birefringence
  • 9.5. Ultraviolet range
  • 9.6. Electronic structure
  • 10. The surface of ice
  • 10.1. Introduction
  • 10.2. Surface structure
  • 10.3. Optical ellipsometry and microscopy
  • 10.4. Electrical properties of the surface
  • 10.5. Nuclear magnetic resonance
  • 10.6. Scanning force microscopy
  • 10.7. Surface energy
  • 10.8. Review of experimental evidence
  • 10.9. Theoretical models
  • 10.10. Conclusions
  • 11. The other phases of ice
  • 11.1. Introduction
  • 11.2. Ice XI--The ordered form of ice Ih
  • 11.3. Ices VII and VIII
  • 11.4. Ice VI
  • 11.5. Ice II
  • 11.6. Ices III, IV, V, IX, and XII
  • 11.7. Ice X and beyond
  • 11.8. Cubic ice (Ice Ic)
  • 11.9. Amorphous ices
  • 11.10. Clathrate hydrates
  • 11.11. Lattice vibrations and the hydrogen bond
  • 12. Ice in nature
  • 12.1. Lake and river ice
  • 12.2. Sea ice
  • 12.3. Ice in the atmosphere
  • 12.4. Snow
  • 12.5. Glacier and polar ice
  • 12.6. Frozen ground
  • 12.7. Ice in the Solar System
  • 13. Adhesion and friction
  • 13.1. Experiments on adhesion
  • 13.2. Physical mechanisms of adhesion
  • 13.3. Friction
  • Bibliography
  • References
  • Index