Modern catalytic methods for organic synthesis with diazo compounds : from cyclopropanes to ylides /

Saved in:
Bibliographic Details
Author / Creator:Doyle, Michael P.
Imprint:New York : Wiley, c1998.
Description:xvii, 652 p. : ill. ; 25 cm.
Language:English
Subject:Organic compounds -- Synthesis.
Catalysis.
Diazo compounds.
Catalysis.
Diazo compounds.
Organic compounds -- Synthesis.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/2906215
Hidden Bibliographic Details
Other authors / contributors:McKervey, M. Anthony, 1938-
Ye, Tao, 1963-
ISBN:0471135569 (cloth : alk. paper)
Notes:"A Wiley-Interscience publication."
Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Acknowledgments
  • 1.. Synthesis of [alpha]-Diazocarbonyl Compounds
  • 1.1. Introduction
  • 1.2. Acylation of Diazoalkanes
  • Preparation of Diazomethane from Diazald
  • Preparation of a Diazoketone from an Acid Chloride: Synthesis of 1-Diazo-4-phenyl-2-butanone
  • Preparation of a Diazoketone from Mixed Carbonic Anhydrides: Synthesis of N-tert-Butoxycarbonyl-L-Phenylalanyl Diazomethane
  • 1.3. Diazo Transfer Reactions
  • 1.3.1. Simple Diazo Transfer Reactions
  • Simple Diazo Transfer Reaction: Synthesis of tert-Butyl [alpha]-Diazoacetoacetate
  • 1.3.2. Deformylating Diazo Transfer and Related Modifications
  • Deformylating Diazo Transfer Reaction: Synthesis of 2-Diazocyclohexanone
  • Detrifluoroacetylating Diazo Transfer: Synthesis of (E)-1-Diazo-4-Phenyl-3-Buten-2-one
  • 1.3.3. Effects of Base and Solvent on Diazo Transfer
  • Direct Diazo Transfer Using 2,4,6-Triisopropyl-phenylsulfonyl Azide: Synthesis of 2-Diazo-5-methoxy-1-tetralone
  • 1.3.4. Effects of Transfer Reagent on Diazo Transfer and Hazards Evaluation
  • Synthesis of 4-Dodecylbenzenesulfonyl Azide
  • 1.4. Other Routes to Diazocarbonyl Compounds
  • Glyoxylic Acid Chloride p-Toluenesulfonyl-hydrazone: Preparation of Diazoester 158
  • 1.5. Chemical Modification of Diazocarbonyl Compounds
  • 1.6. Conclusion: Safety and Handling of Diazocarbonyl Compounds
  • 1.7. References
  • 2.. Catalysts for Metal Carbene Transformations
  • 2.1. Electrophilic Addition to Diazo Compounds
  • 2.2. Mechanism of Catalytic Diazo Decomposition. Metal Carbene Generation and Reactions
  • 2.3. Mechanism of Catalytic Diazo Decomposition. Electrophilic Addition by Metal Olefin Complexes
  • 2.4. Copper Catalysts for Diazo Decomposition
  • 2.4.1. Oxidation States for Copper
  • 2.4.2. Ligands for Copper
  • Ligand Preparation
  • 2.5. Cobalt Catalysts for Diazo Decomposition
  • 2.6. Palladium Catalysts for Diazo Decomposition
  • 2.7. Rhodium Catalysts for Diazo Decomposition
  • 2.7.1. Dirhodium (II) Carboxylates
  • Rhodium(II) Perfluorobutyrate
  • Dirhodium(II) Tetrakis[4-tert-butyl-N-benzenesulfonyl-L-prolinate]
  • 2.7.2. Dirhodium(II) Carboxamidates
  • Dirhodium(II) Caprolactamate
  • Dirhodium(II) Tetrakis[methyl 2-oxooxazolidine-4(S)-carboxylate], Rh[subscript 2](4S-MEOX)[subscript 4]
  • 2.7.3. Hexarhodium Hexadecacarbonyl
  • 2.7.4. Dirhodium(II) Phosphates and Orthometallated Phosphines
  • 2.7.5. Rhodium(III) Porphyrins
  • 2.8. Ruthenium Catalysts for Diazo Decomposition
  • 2.9. Other Transition Metals as Catalysts for Diazo Decomposition
  • 2.9.1. Osmium
  • 2.9.2. Iron
  • 2.9.3. Platinum and Nickel
  • 2.9.4. The Chromium Triad
  • 2.10. Metal Carbenes as Stoichiometric Reagents
  • 2.11. References
  • 3.. Insertion Reactions
  • 3.1. Catalytic Intermolecular Carbon-Hydrogen Insertion Reactions
  • 3.2. Catalytic Intramolecular Carbon-Hydrogen Insertion Reactions: General Considerations
  • 3.3. Catalytic Intramolecular Carbon-Hydrogen Insertion Reactions of Diazoketones: Regioselectivity for Cyclopentanone Formation
  • 3.4. Catalytic Intramolecular Carbon-Hydrogen Insertion Reactions of Diazoketones and Diazoesters: Diastereoselectivity and Synthetic Applications
  • 3.5. Catalytic Intramolecular Carbon-Hydrogen Insertion Reactions of Diazoacetates: Lactone Formation
  • Catalytic Dinitrogen Extrusion from l-(--)-Menthyl Diazoacetoacetate
  • 3.6. Catalytic Intramolecular Carbon-Hydrogen Insertion Reactions of Diazoacetamides: Lactam Formation
  • 3.7. Catalyst-Dependent Chemoselectivity and Regioselectivity for Carbon-Hydrogen Insertion
  • 3.8. Enantioselectivity in Intramolecular Carbon-Hydrogen Insertion Reactions
  • Synthesis of (+)-Arctigenin
  • Synthesis of (4R,5R)-(+)-2-Deoxyxylolactone
  • 3.9. Diastereoselection and Regioselection in Carbon-Hydrogen Insertion Reactions Promoted by Chiral Catalysts
  • 3.10. Diastereoselection in Carbon-Hydrogen Insertion Reactions Controlled with the Use of Chiral Auxiliaries
  • 3.11. Silicon-Hydrogen and Related Insertion Reactions
  • 3.12. References
  • 4.. Intermolecular Cyclopropanation and Related Addition Reactions
  • 4.1. Cyclopropanation with Diazomethane
  • 4.2. Cyclopropanation Reactions with Diazocarbonyl Compounds. General
  • 4.3. Intermolecular Cyclopropanation Reactions of Diazocarbonyl Compounds. Diastereoselectivity
  • 2,6-Di-tert-butyl-4-methylphenyl Diazoacetate (BDA)
  • 4.4. Intermolecular Cyclopropanation Reactions of Diazocarbonyl Compounds. Regioselectivity and Relative Reactivities
  • 4.5. Mechanism of Cyclopropanation. Stereochemistry of Cyclopropane Formation
  • 4.6. Intermolecular Cyclopropanation Reactions of Diazocarbonyl Compounds. Enantioselectivity
  • 4.6.1. Salicylaldimine-Copper Catalysts
  • 4.6.2. Semicorrin-Copper Catalysts
  • 4.6.3. bis(Oxazoline)-Copper Catalysts
  • 4.6.4. Pyridine-Ligated Copper Catalysts
  • 4.6.5. Other Chiral Copper Catalysts
  • 4.6.6. Chiral Dirhodium(II) Carboxylates
  • 4.6.7. Chiral Dirhodium(II) Carboxamidates
  • 4.6.8. Other Chiral Rhodium Catalysts
  • 4.6.9. Pybox-Ruthenium Catalysts
  • 4.6.10. Cobalt Catalysts
  • 4.7. Donor-Acceptor Cyclopropanes in Organic Synthesis
  • 4.8. Vinyldiazoacetates--Intermolecular Annulation Reactions
  • 4.8.1. Formal [3+4]-Cycloaddition
  • 4.8.2. Formal [3+2]-Cycloaddition
  • 4.9. 1,3-Dipolar Ketocarbene Addition
  • 4.10. Intermolecular Cyclopropanation and Subsequent Reactions in Synthesis
  • 4.11. Cyclopropenation of Alkynes
  • 4.12. Aziridination
  • 4.12.1. Addition to Imines
  • 4.12.2. Nitrene Addition to Alkenes
  • 4.13. References
  • 5.. Intramolecular Cyclopropanation and Related Addition Reactions
  • 5.1. Intramolecular Cyclopropanation of Diazoketones
  • 5.2. Vinylcyclopropylcarbonyl Compounds in Organic Synthesis
  • 5.3. Intramolecular Cyclopropanation of Diazoesters and Diazoamides
  • 5.4. Regioselectivity and Chemoselectivity in Intramolecular Cyclopropanation Reactions
  • 5.5. Enantioselective Intramolecular Cyclopropanation Reactions
  • Synthesis of (1R,5S)-(--)-6,6-Dimethyl-3-oxabicyclo-[3.1.0]hexan-2-one
  • Synthesis of (1S,5R)-(+)-3,6,6-Trimethyl-3-azabicyclo-[3.1.0]hexan-2-one
  • 5.6. Diastereocontrol in Intramolecular Cyclopropanation Reactions
  • 5.7. Macrocyclic Cyclopropanation
  • 5.8. Intramolecular Cyclopropenation Reactions: Tandem/Cascade Processes
  • 5.9. References
  • 6.. Cycloaddition and Substitution Reactions with Aromatic and Heteroaromatic Compounds
  • 6.1. Intermolecular Reactions with Benzene and its Derivatives
  • 6.1.1. Diazoesters
  • 6.1.2. Diazoketones
  • 6.2. Intramolecular Cycloaddition Reactions with Benzene Derivatives
  • 6.2.1. Diazoketones
  • Diazoketone Cyclization onto a Benzene Ring: 3,4-Dihydro-1(2H)-Azulenone [1(2H)-Azulenone, 3,4-dihydro-]
  • 6.2.2. Diazoesters and Diazoamides
  • 6.2.3. Chemoselectivity in Aromatic Cycloaddition
  • 6.2.4. Asymmetric Synthesis in Aromatic Cycloaddition
  • 6.3. Substitution Reactions with Aromatic Compounds
  • Rhodium(II) Acetate-Catalyzed Decomposition of 2-Diazo-3-oxobutanamides
  • 6.3.1. Chemoselectivity in Aromatic Substitution
  • 6.3.2. Asymmetric Synthesis in Aromatic Substitution
  • 6.4. Cycloaddition and Substitution Reactions with Heterocyclic Aromatic Compounds
  • 6.4.1. Furans
  • Reaction of EDA with Furan
  • 6.4.2. Pyrroles
  • 6.4.3. Thiophenes
  • 6.5. References
  • 7.. Generation and Reactions of Ylides from Diazocarbonyl Compounds
  • 7.1. Introduction
  • 7.2. Formation of Sulfur Ylides
  • 7.2.1. Formation of Stable Sulfonium and Sulfoxonium Ylides from Diazocarbonyl Precursors
  • 7.2.2. Intermolecular Formation of Sulfur Ylides and Subsequent Reactions
  • Reaction of 2-Phenyl-1,3-dithiane with EDA
  • 7.2.3. Intramolecular Formation of Sulfur Ylides and Subsequent Reactions
  • 7.2.4. [beta]-Elimination and Related [1,4] Rearrangement
  • 7.2.5. Chemo- and Stereoselectivity in Sulfur Ylide Formation and Subsequent Rearrangement
  • 7.3. Formation of Oxonium Ylides
  • 7.3.1. Intermolecular Formation of Oxonium Ylides and Subsequent Reactions
  • 7.3.2. Intramolecular Formation of Oxonium Ylides and Subsequent Reactions
  • [2,3]-Sigmatropic Rearrangement of Cyclic Oxonium Ylide: Synthesis of 8-Chloro-5,7-dimethoxy-2-carbomethoxy-2-[1-(S)- methyl-2-butenyl]benzofuran-3-one
  • 7.3.3. Chemo-, Diastereo-, and Enantioselectivity in Oxonium Ylide Formation
  • 7.4. Formation of Nitrogen Ylides from Diazocarbonyl Compounds
  • 7.4.1. Intermolecular Formation of Nitrogen Ylides and Subsequent Reactions
  • 7.4.2. Intramolecular Formation of Nitrogen Ylides and Subsequent Reactions
  • 7.5. Formation of Carbonyl Ylides from Diazocarbonyl Compounds
  • 7.5.1. Intermolecular Carbonyl Ylide Formation and Subsequent Reactions
  • 7.5.2. Intramolecular Carbonyl Ylide Formation and Subsequent Reactions
  • Intramolecular Carbonyl Ylide Formation and Subsequent 1,3-Dipolar Cycloaddition Reaction: Synthesis of 6,8-Dioxabicyclo[3.2.1]octane Ring Systems
  • 7.5.3. Chemoselectivity in Carbonyl Ylide Formation
  • 7.6. Formation of Thiocarbonyl Ylides from Diazocarbonyl Compounds
  • 7.7. References
  • 8.. X-H Insertion Reactions of Diazocarbonyl Compounds (X = N, O, S, Se, P, Halogen)
  • 8.1. Introduction
  • 8.2. N-H Insertion
  • 8.2.1. Intermolecular N-H Reactions
  • 8.2.2. Intramolecular N-H Insertion
  • 8.2.3. Asymmetric N-H Insertion
  • 8.3. O-H Insertion with Water, Alcohols, and Phenols
  • 8.3.1. Intermolecular O-H Insertion
  • 2-Isopropoxycyclohexanone
  • 8.3.2. Intramolecular O-H Insertion
  • 8.3.3. Asymmetric O-H Insertion
  • 8.4. O-H Insertion Reactions with Carboxylic Acids, Carboxylic Esters, and Sulfonic Acids
  • (S)-3-N-(Phthalimido)-4-phenyl-1-(methane-sulfonyloxy)butan-2-one
  • 8.5. S-H Insertion
  • 2-(Phenylthio)-6-phenyl-3-hexanone
  • 8.6. Se-H Insertion
  • 8.7. P-H Insertion
  • 8.8. X-H Insertion (X = Halogen)
  • 8.9. References
  • 9.. The Wolff Rearrangement and Related Reactions
  • 9.1. The Arndt-Eistert Homologation
  • Ethyl 1-Naphthylacetate
  • 3(S)-Methyl-3-(N-tert-butoxycarbonylamino)-6-(N-bis-benzyloxycarbonyl guanidyl)hexanoate
  • Protected Homopeptide
  • 9.2. Ring Contraction via the Wolff Rearrangement
  • Formation and Photochemical Wolff Rearrangement of Cyclic [alpha]-Diazoketones: D-Norandrost-5-en-3[beta]-ol-16-carboxylic Acids
  • 9.3. The Wolff Rearrangement with Cycloaddition Reactions
  • 9.4. The Vinylogous Wolff Rearrangement
  • 9.5. Miscellaneous Applications of the Wolff Rearrangement
  • 9.6. Conclusions
  • 9.7. References
  • 10.. Reactions of [alpha]-Diazocarbonyl Compounds with Aldehydes and Ketones
  • 10.1. Introduction
  • 10.2. Base Promoted Reactions of [alpha]-Diazocarbonyl Compounds with Aldehydes and Ketones
  • Base-Promoted Reactions of [alpha]-Diazocarbonyl Compounds with Aldehydes: Synthesis of (N-Butoxy-carbonyl-L-Phenylalanyl)-Methyl Phenyl Ketone
  • 10.3. Acid-Catalyzed Reactions of [alpha]-Diazocarbonyl Compounds with Aldehydes
  • Synthesis of [beta]-Dicarbonyl Compounds via Tin(II) Chloride-Catalyzed Reaction: Conversion of Hydrocinnamaldehyde into Ethyl 3-Oxo-5-phenylvalerate
  • 10.4. Synthesis of Tetrahydrofurans
  • Tetrahydrofuran Annulation with [beta]-p-Methoxybenzyl Pivalaldehyde and Ethyl Diazoacetate: Synthesis of Substituted Tetrahydrofuran 14
  • 10.5. Olefination of Aldehydes and Ketones with Diazocarbonyl Compounds
  • 10.6. Acid-Catalyzed Reactions of [alpha]-Diazocarbonyl Compounds with Ketones
  • Homologation of Cyclobutanone Ring with Ethyl Diazoacetate: Synthesis of Methyl (2S,3aR,6aS)-1,2,3,3a,4,5,6,6a-Octahydro-2-methyl-4-oxopentalene-2-carboxylate
  • 10.7. References
  • 11.. Acid-Promoted Cyclization of Unsaturated and Aromatic Diazo Ketones
  • 11.1. Introduction
  • 11.2. Cyclization of [gamma, delta]-Unsaturated Diazoketones
  • 11.3. Cyclization of [beta, gamma]-Unsaturated Diazoketones
  • 11.4. Intramolecular Alkylation of Diazoketones through Aryl Participation
  • 11.4.1. Ar[subscript 1]-5 Participation in the Cyclization of Aromatic Diazoketones
  • 11.4.2. Ar[subscript 1]-6 Participation in the Cyclization of Aromatic Diazoketones
  • 11.4.3. Ar[subscript 1]-4 Cyclization in the Cyclization of Aromatic Diazoketones
  • 11.5. Synthesis of Heterocycles by Acid-Promoted Cyclization of [alpha]-Diazocarbonyl Compounds
  • 11.6. References
  • 12.. Miscellaneous Diazocarbonyl Reactions
  • 12.1. Introduction
  • 12.2. Oxidation of Diazocarbonyl Compounds
  • Oxidation of N-Benzyloxycarbonyl-L-phenylalanyl diazomethane with Dimethyldioxirane. Preparation of an N-Protected Amino Glyoxal Hydrate
  • 12.3. [beta]-Hydride Elimination
  • Preparation of Methyl (Z)-2-Undecenoate from Methyl 2-Diazoundecanoate
  • 12.4. X-Y Insertion Reactions
  • 12.4.1. X-Y = The Halogens
  • 12.4.2. X-Y = Arenesulfonyl Halides (ArS-X)
  • 12.4.3. X-Y = Areneselenyl Halides and Diphenyl Diselenide (ArSe-X)
  • Preparation of 2-Phenylselenyl-2-cyclohexen-1-one from 2-Diazocyclohexanone
  • 12.4.4. X-Y = Trialkylboranes (R-BR[subscript 2])
  • 12.5. Dimerization Reactions
  • 12.6. Diazocarbonyl Compounds as 1,3-Dipoles in [3+2] Cycloaddition Reactions
  • 12.7. References
  • Index