Advances in image analysis /

Saved in:
Bibliographic Details
Imprint:Bellingham, Wash., USA : SPIE Optical Engineering Press, c1992.
Description:xi, 557 p. : ill. (some col.) ; 26 cm.
Language:English
Subject:Image processing -- Digital techniques
Image processing -- Digital techniques.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1457630
Hidden Bibliographic Details
Other authors / contributors:Mahdavieh, Y.
Gonzalez, Rafael C.
ISBN:0819410462
0819410470 (pbk.)
Notes:Includes bibliographical references.
Table of Contents:
  • Contributors
  • Preface
  • Introduction
  • Enhancement
  • Chapter 1.. Adaptive Smoothing: Principles and Applications
  • Edge Detection
  • Chapter 2.. Edge Detection from Severely Degraded Images
  • Chapter 3.. Edge Detection with Gaussian Filters at Multiple Scales of Resolution
  • Segmentation
  • Chapter 4.. Hierarchical Segmentation Techniques with Applications to Magnetic Resonance Images
  • Chapter 5.. Color Image Segmentation
  • Chapter 6.. RewoOs Filter and Image Segmentation
  • Feature Extraction
  • Chapter 7.. Boundary Finding with Parametrically Deformable Models
  • Chapter 8.. Tracking Cells and Subcellular Features
  • Chapter 9.. Flaw Detection and Classification in Texture Materials
  • Morphology
  • Chapter 10.. Introduction to Binary Morphology
  • Chapter 11.. Introduction to Gray-Scale Morphology
  • Chapter 12.. Model-Based Morphology: The Opening Spectrum
  • Motion
  • Chapter 13.. Motion Analysis of Image Sequences
  • Chapter 14.. Detection and Representation of Events in Motion Trajectories
  • Applications
  • Chapter 15.. Generating Structure Hypotheses in Cerebral Magnetic Resonance Images Using Segment-Based Focusing and Graph Theoretic Cycle Enumeration
  • Chapter 16.. Knowledge-Guided Boundary Detection for Medical Images
  • Chapter 17.. Combining Edge Pixels into Parameterized Curve Segments Using the MDL Principle and the Hough Transform
  • Chapter 18.. Estimating Potato Acreage and Yield in the Columbia Basin Using Landsat