Bibliographic Details

Advanced field theory : micro, macro, and thermal physics / Hiroomi Umezawa.

Author / Creator Umezawa, H. (Hiroomi), 1924-
Imprint New York : American Institute of Physics, c1993.
Description xii, 238 p. : ill. ; 25 cm.
Language English
Subject Quantum field theory.
Quantum field theory.
Format Print, Book
URL for this record http://pi.lib.uchicago.edu/1001/cat/bib/1426646
ISBN 1563960818
Notes Includes bibliographical references and index.
Table of Contents:
  • 1.
  • Micro and Macro Physics.
  • 1.1.
  • Micro, Macro, and Thermal.
  • 1.2.
  • Classical Physics for Particles and Fields.
  • 1.3.
  • Quantum Mechanics and Quantum Field Theory.
  • 1.4.
  • The c-q Transmutation Condition.
  • 1.5.
  • Matter and the Vacuum
  • 2.
  • Vacuum Correlation.
  • 2.1.
  • Number Representation.
  • 2.2.
  • Coherent, Squeezed or Thermal-Like States.
  • 2.2.1.
  • Coherent States.
  • 2.2.2.
  • Squeezed States.
  • 2.2.3.
  • Two-Mode Squeezed States.
  • 2.2.4.
  • An Equivalence Theorem.
  • 2.3.
  • Noise in Pure States.
  • 2.3.1.
  • Thermal-Like Noise in the Two-Mode State.
  • 2.3.2.
  • Correlation through the Vacuum.
  • 2.4.
  • Pure State and Mixed State.
  • 2.4.1.
  • Bosonic System.
  • 2.4.2.
  • Thermal Vacuum for Fermionic Oscillators.
  • 2.4.3.
  • Non-Trivial Parameters in Vacua.
  • 2.5.
  • TFD Mechanism for Noise Creation.
  • 2.6.
  • TFD Mechanism and Black Hole.
  • 2.7.
  • Phase and Time Operators in TFD
  • 3.
  • Inequivalent Vacua.
  • 3.1.1.
  • Infrared Catastrophe of Bremsstrahlung.
  • 3.1.2.
  • Vacuum Polarization.
  • 3.1.3.
  • Renormalization.
  • 3.2.
  • Many Vacua.
  • 3.3.
  • Anomalous Operators.
  • 3.4.
  • Pure State and Mixed State.
  • 3.4.1.
  • Bosonic Systems.
  • 3.4.2.
  • Fermionic Systems
  • 4.
  • Quasi-Particle Picture.
  • 4.1.
  • Modern Particle Picture and the Old Atomism.
  • 4.2.
  • Countably Infinite Degrees of Freedom.
  • 4.3.
  • Continuous Set of Number States.
  • 4.4.
  • Quasi-Particles and Dynamical Map.
  • 4.5.
  • Time-Independent Global Operators.
  • 4.6.
  • The Dynamical Map of the Hamiltonian.
  • 4.6.1.
  • Quasi-Particle Free Hamiltonian.
  • 4.6.2.
  • Reactions among Quasi-Particles.
  • 4.6.3.
  • Asymptotic Fields and Quasi-Particles.
  • 4.6.4.
  • Many Choices for Incoming Particles.
  • 4.6.5.
  • Renormalization
  • 5.
  • Ordered States.
  • 5.1.
  • Spontaneously Broken Symmetries.
  • 5.1.1.
  • A Physical Picture.
  • 5.1.2.
  • A Mathematical Picture.
  • 5.1.3.
  • Symmetry Rearrangement.
  • 5.1.4.
  • Boson Transformation.
  • 5.1.5.
  • Low Energy Theorem I.
  • 5.1.6.
  • Generators and the Nother Current.
  • 5.1.7.
  • The Ward-Takahashi Relations.
  • 5.1.8.
  • [Theta]-Selection.
  • 5.1.9.
  • Summary of this Section.
  • 5.2.
  • Broken Phase Symmetry in a Scalar Model.
  • 5.2.2.
  • Model.
  • 5.2.3.
  • The Nother Current and the Generator.
  • 5.2.4.
  • Phase Symmetry Rearrangement.
  • 5.2.5.
  • The Order Parameter and [Theta]-Selection.
  • 5.2.6.
  • The Dynamical Map of the Current.
  • 5.2.7.
  • A Fluctuation Effect.
  • 5.2.8.
  • A Strategy for Computational Analysis.
  • 5.2.9.
  • Superfluid Current.
  • 5.3.
  • Superconductivity.
  • 5.3.2.
  • The BCS Model.
  • 5.3.3.
  • The Current and the Generator.
  • 5.3.4.
  • Phase Symmetry Rearrangement.
  • 5.3.5.
  • The Dynamical Map of Charge Density.
  • 5.3.6.
  • The Nambu-Goldestone Field.
  • 5.3.7.
  • Are NG-Bosons Entirely Eliminated?
  • 5.3.8.
  • Order Parameter and [Theta]-Selection.
  • 5.3.9.
  • A Fluctuation Effect.
  • 5.3.10.
  • Gauge Invariance.
  • 5.3.11.
  • A Strategy in Computational Analysis.
  • 5.4.
  • Non-Abelian Symmetry Breakdown.
  • 5.4.1.
  • Spontaneously Broken Spin Symmetry.
  • 5.4.2.
  • Symmetry Rearrangement.
  • 5.4.3.
  • Low Energy Theorem II.
  • 5.5.
  • c-q Transmutation and Crystal Phonon.
  • 5.6.
  • The Spontaneous Creation of Mass
  • 6.
  • Macroscopic Objects.
  • 6.1.
  • Boson Transformation.
  • 6.1.2.
  • Planck's Constant.
  • 6.1.3.
  • Boson Transformation.
  • 6.1.4.
  • Induced Potential and Zero-Energy Mode.
  • 6.1.5.
  • Quantum Mechanical Operators.
  • 6.1.6.
  • Asymptotic Condition for Free Particles.
  • 6.1.7.
  • Momentum Operator.
  • 6.1.8.
  • Quasi-Static Objects and Singularities.
  • 6.1.9.
  • Many Objects and Many Conservation Laws.
  • 6.1.10.
  • Emergent Symmetries.
  • 6.2.
  • Relativistic Models.
  • 6.2.1.
  • (1+1)-Dimensional objects.
  • 6.2.2.
  • Three-Dimensional Models.
  • 6.2.3.
  • Macroscopic Objects with a Fermion.
  • 6.3.
  • Quantum Solitons in Tree Approximation.
  • 6.3.1.
  • Stable Solitons.
  • 6.3.2.
  • Unstable Solitons.
  • 6.4.
  • Topological Objects and High Dimension.
  • 6.4.1.
  • Path-Dependent Topology.
  • 6.4.2.
  • Superfluid Vortices.
  • 6.4.3.
  • Superconducting Vortices.
  • 6.4.4.
  • A General Formalism.
  • 6.4.5.
  • Defects and the Original Symmetry.
  • 6.5.
  • Finite or Infinite Volume.
  • 6.5.1.
  • Two Views.
  • 6.5.2.
  • Condensed Matter Physics.
  • 6.5.3.
  • Nuclear Physics and High Energy Physics.
  • 6.6.
  • Biological Order
  • 7.
  • Thermo Field Dynamics.
  • 7.2.
  • Hermitian TFD for Free Fields.
  • 7.2.1.
  • Thermal Doublets and Hamiltonian.
  • 7.2.2.
  • The Tilde Conjugation Rules.
  • 7.2.3.
  • Non-Hermitian Representation of TFD.
  • 7.2.4.
  • Spontaneous breakdown of G-symmetry.
  • 7.2.5.
  • The Thermal State Condition.
  • 7.2.6.
  • One-Body Propagators in TFD.
  • 7.3.
  • The General Structure of TFD.
  • 7.4.
  • Thermal Observable.
  • 7.5.
  • Perturbative Calculations.
  • 7.5.1.
  • The Interaction Representation.
  • 7.5.2.
  • Vacuum Stability and Temperature States
  • 8.
  • Equilibrium TFD.
  • 8.1.
  • Temporal Fourier Representation.
  • 8.1.1.
  • The Choices for [alpha].
  • 8.1.2.
  • Product Rules for Loops.
  • 8.1.3.
  • The Spectral Representation.
  • 8.1.4.
  • Particle Number and The Number Parameter.
  • 8.1.5.
  • The Kubo-Martin-Schwinger Condition.
  • 8.1.6.
  • Free Energy.
  • 8.1.7.
  • The Spontaneous Breakdown of Symmetries.
  • 8.1.8.
  • The Thermal Breakdown of Symmetries.
  • 8.1.9.
  • Thermal Quantum Field Theories.
  • 8.2.
  • The t-Representation.
  • 8.2.2.
  • Preparation.
  • 8.2.3.
  • One-Body Propagator
  • 9.
  • Time-Space Dependent TFD.
  • 9.1.
  • Preparation.
  • 9.1.1.
  • A Motivation.
  • 9.2.
  • Time-Dependent TFD.
  • 9.2.1.
  • Time-Dependent Bogoliubov Transformations.
  • 9.2.2.
  • The Unperturbed One-Body Propagator.
  • 9.2.3.
  • The Corrected Particle Number.
  • 9.2.4.
  • Heisenberg Number and Corrected Number.
  • 9.2.5.
  • Product Rules.
  • 9.2.6.
  • The Kinetic Equation.
  • 9.3.
  • Time-Space Dependent TFD.
  • 9.3.1.
  • The Bogoliubov Transformations.
  • 9.3.2.
  • The Unperturbed Hamiltonian.
  • 9.3.3.
  • Time-Space Dependent TFD for Fields.
  • 9.3.4.
  • The Unperturbed One-Body Propagator.
  • 9.4.
  • Observed Particles and Quasi-Particles.