Digital image warping /
Saved in:
Author / Creator: | Wolberg, George, 1964- |
---|---|
Imprint: | Los Alamitos, Calif. : IEEE Computer Society Press, c1990. |
Description: | x, 318 p. : ill. ; 27 cm. |
Language: | English |
Subject: | Image processing -- Digital techniques Image processing -- Digital techniques. Image transmission. Imaging systems -- Image quality. |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/1288966 |
Table of Contents:
- Chapter 1. Introduction
- 1.1. Background
- 1.2. Overview
- 1.2.1. Spatial Transformations
- 1.2.2. Sampling Theory
- 1.2.3. Resampling
- 1.2.4. Aliasing
- 1.2.5. Scanline Algorithms
- 1.3. Conceptual Layout
- Chapter 2. Preliminaries
- 2.1. Fundamentals
- 2.1.1. Signals and Images
- 2.1.2. Filters
- 2.1.3. Impulse Response
- 2.1.4. Convolution
- 2.1.5. Frequency Analysis
- 2.1.5.1. An Analogy to Audio Signals
- 2.1.5.2. Fourier Transforms
- 2.1.5.3. Discrete Fourier Transforms
- 2.2. Image Acquisition
- 2.3. Imaging Systems
- 2.3.1. Electronic Scanners
- 2.3.1.1. Vidicon Systems
- 2.3.1.2. Image Dissectors
- 2.3.2. Solid-State Sensors
- 2.3.2.1. CCD Cameras
- 2.3.2.2. CID Cameras
- 2.3.3. Mechanical Scanners
- 2.4. Video Digitizers
- 2.5. Digitized Imagery
- 2.6. Summary
- Chapter 3. Spatial Transformations
- 3.1. Definitions
- 3.1.1. Forward Mapping
- 3.1.2. Inverse Mapping
- 3.2. General Transformation Matrix
- 3.2.1. Homogeneous Coordinates
- 3.3. Affine Transformations
- 3.3.1. Translation
- 3.3.2. Rotation
- 3.3.3. Scale
- 3.3.4. Shear
- 3.3.5. Composite Transformations
- 3.3.6. Inverse
- 3.3.7. Inferring Affine Transformations
- 3.4. Perspective Transformations
- 3.4.1. Inverse
- 3.4.2. Inferring Perspective Transformations
- 3.4.2.1. Case 1: Square-to-Quadrilateral
- 3.4.2.2. Case 2: Quadrilateral-to-Square
- 3.4.2.3. Case 3: Quadrilateral-to-Quadrilateral
- 3.5. Bilinear Transformations
- 3.5.1. Bilinear Interpolation
- 3.5.2. Separability
- 3.5.3. Inverse
- 3.5.4. Interpolation Grid
- 3.6. Polynomial Transformations
- 3.6.1. Inferring Polynomial Coefficients
- 3.6.2. Pseudoinverse Solution
- 3.6.3. Least-Squares With Ordinary Polynomials
- 3.6.4. Least-Squares With Orthogonal Polynomials
- 3.6.5. Weighted Least-Squares
- 3.7. Piecewise Polynomial Transformations
- 3.7.1. A Surface Fitting Paradigm for Geometric Correction
- 3.7.2. Procedure
- 3.7.3. Triangulation
- 3.7.4. Linear Triangular Patches
- 3.7.5. Cubic Triangular Patches
- 3.8. Global Splines
- 3.8.1. Basis Functions
- 3.8.2. Regularization
- 3.8.2.1. Grimson, 1981
- 3.8.2.2. Terzopoulos, 1984
- 3.8.2.3. Discontinuity Detection
- 3.8.2.4. Boult and Kender, 1986
- 3.8.2.5. A Definition of Smoothness
- 3.9. Summary
- Chapter 4. Sampling Theory
- 4.1. Introduction
- 4.2. Sampling
- 4.3. Reconstruction
- 4.3.1. Reconstruction Conditions
- 4.3.2. Ideal Low-Pass Filter
- 4.3.3. Sinc Function
- 4.4. Nonideal Reconstruction
- 4.5. Aliasing
- 4.6. Antialiasing
- 4.7. Summary
- Chapter 5. Image Resampling
- 5.1. Introduction
- 5.2. Ideal Image Resampling
- 5.3. Interpolation
- 5.4. Interpolation Kernels
- 5.4.1. Nearest Neighbor
- 5.4.2. Linear Interpolation
- 5.4.3. Cubic Convolution
- 5.4.4. Two-Parameter Cubic Filters
- 5.4.5. Cubic Splines
- 5.4.5.1. B-Splines
- 5.4.5.2. Interpolating B-Splines
- 5.4.6. Windowed Sinc Function
- 5.4.6.1. Hann and Hamming Windows
- 5.4.6.2. Blackman Window
- 5.4.6.3. Kaiser Window
- 5.4.6.4. Lanczos Window
- 5.4.6.5. Gaussian Window
- 5.4.7. Exponential Filters
- 5.5. Comparison of Interpolation Methods
- 5.6. Implementation
- 5.6.1. Interpolation with Coefficient Bins
- 5.6.2. Fant's Resampling Algorithm
- 5.7. Discussion
- Chapter 6. Antialiasing
- 6.1. Introduction
- 6.1.1. Point Sampling
- 6.1.2. Area Sampling
- 6.1.3. Space-Invariant Filtering
- 6.1.4. Space-Variant Filtering
- 6.2. Regular Sampling
- 6.2.1. Supersampling
- 6.2.2. Adaptive Supersampling
- 6.2.3. Reconstruction from Regular Samples
- 6.3. Irregular Sampling
- 6.3.1. Stochastic Sampling
- 6.3.2. Poisson Sampling
- 6.3.3. Jittered Sampling
- 6.3.4. Point-Diffusion Sampling
- 6.3.5. Adaptive Stochastic Sampling
- 6.3.6. Reconstruction from Irregular Samples
- 6.4. Direct Convolution
- 6.4.1. Catmull, 1974
- 6.4.2. Blinn and Newell, 1976
- 6.4.3. Feibush, Levoy, and Cook, 1980
- 6.4.4. Gangnet, Perny, and Coueignoux, 1982
- 6.4.5. Greene and Heckbert, 1986
- 6.5. Prefiltering
- 6.5.1. Pyramids
- 6.5.2. Summed-Area Tables
- 6.6. Frequency Clamping
- 6.7. Antialiased Lines and Text
- 6.8. Discussion
- Chapter 7. Scanline Algorithms
- 7.1. Introduction
- 7.1.1. Forward Mapping
- 7.1.2. Inverse Mapping
- 7.1.3. Separable Mapping
- 7.2. Incremental Algorithms
- 7.2.1. Texture Mapping
- 7.2.2. Gouraud Shading
- 7.2.3. Incremental Texture Mapping
- 7.2.4. Incremental Perspective Transformations
- 7.2.5. Approximation
- 7.2.6. Quadratic Interpolation
- 7.2.7. Cubic Interpolation
- 7.3. Rotation
- 7.3.1. Braccini and Marino, 1980
- 7.3.2. Weiman, 1980
- 7.3.3. Catmull and Smith, 1980
- 7.3.4. Paeth, 1986/ Tanaka, et. al., 1986
- 7.3.5. Cordic Algorithm
- 7.4. 2-Pass Transforms
- 7.4.1. Catmull and Smith, 1980
- 7.4.1.1. First Pass
- 7.4.1.2. Second Pass
- 7.4.1.3. 2-Pass Algorithm
- 7.4.1.4. An Example: Rotation
- 7.4.1.5. Another Example: Perspective
- 7.4.1.6. Bottleneck Problem
- 7.4.1.7. Foldover Problem
- 7.4.2. Fraser, Schowengerdt, and Briggs, 1985
- 7.3.3. Smith, 1987
- 7.5. 2-Pass Mesh Warping
- 7.5.1. Special Effects
- 7.5.2. Description of the Algorithm
- 7.5.2.1. First Pass
- 7.5.2.2. Second Pass
- 7.5.2.3. Discussion
- 7.5.3. Examples
- 7.5.4. Source Code
- 7.6. More Separable Mappings
- 7.6.1. Perspective Projection: Robertson, 1987
- 7.6.2. Warping Among Arbitrary Planar Shapes: Wolberg, 1988
- 7.6.3. Spatial Lookup Tables: Wolberg and Boult, 1989
- 7.7. Separable Image Warping
- 7.7.1. Spatial Lookup Tables
- 7.7.2. Intensity Resampling
- 7.7.3. Coordinate Resampling
- 7.7.4. Distortions and Errors
- 7.7.4.1. Filtering Errors
- 7.7.4.2. Shear
- 7.7.4.3. Perspective
- 7.7.4.4. Rotation
- 7.7.4.5. Distortion Measures
- 7.7.4.6. Bottleneck Distortion
- 7.7.5. Foldover Problem
- 7.7.5.1. Representing Foldovers
- 7.7.5.2. Tracking Foldovers
- 7.7.5.3. Storing Information From Foldovers
- 7.7.5.4. Intensity Resampling with Foldovers
- 7.7.6. Compositor
- 7.7.7. Examples
- 7.8. Discussion
- Chapter 8. Epilogue
- Appendix 1. Fast Fourier Transforms
- A1.1. Discrete Fourier Transform
- A1.2. Danielson-Lanczos Lemma
- A1.2.1. Butterfly Flow Graph
- A1.2.2. Putting It All Together
- A1.2.3. Recursive FFT Algorithm
- A1.2.4. Cost of Computation
- A1.3. Cooley-Tukey Algorithm
- A1.3.1. Computational Cost
- A1.4. Cooley-Sande Algorithm
- A1.5. Source Code
- A1.5.1. Recursive FFT Algorithm
- A1.5.2. Cooley-Tukey FFT Algorithm
- Appendix 2. Interpolating Cubic Splines
- A2.1. Definition
- A2.2. Constraints
- A2.3. Solving for the Spline Coefficients
- A2.3.1. Derivation of A[subscript 2]
- A2.3.2. Derivation of A[subscript 3]
- A2.3.3. Derivation of A[subscript 1] and A[subscript 3]
- A2.4. Evaluting the Unknown Derivatives
- A2.4.1. First Derivatives
- A2.4.2. Second Derivatives
- A2.4.3. Boundary Conditions
- A2.5. Source Code
- A2.5.1. Ispline
- A2.5.2. Ispline_gen
- Appendix 3. Forward Difference Method
- References
- Index