Digital image warping /

Saved in:
Bibliographic Details
Author / Creator:Wolberg, George, 1964-
Imprint:Los Alamitos, Calif. : IEEE Computer Society Press, c1990.
Description:x, 318 p. : ill. ; 27 cm.
Language:English
Subject:Image processing -- Digital techniques
Image processing -- Digital techniques.
Image transmission.
Imaging systems -- Image quality.
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1288966
Hidden Bibliographic Details
Other title:Warping.
ISBN:0818689447
Notes:Includes bibliographical references and index.
Table of Contents:
  • Chapter 1. Introduction
  • 1.1. Background
  • 1.2. Overview
  • 1.2.1. Spatial Transformations
  • 1.2.2. Sampling Theory
  • 1.2.3. Resampling
  • 1.2.4. Aliasing
  • 1.2.5. Scanline Algorithms
  • 1.3. Conceptual Layout
  • Chapter 2. Preliminaries
  • 2.1. Fundamentals
  • 2.1.1. Signals and Images
  • 2.1.2. Filters
  • 2.1.3. Impulse Response
  • 2.1.4. Convolution
  • 2.1.5. Frequency Analysis
  • 2.1.5.1. An Analogy to Audio Signals
  • 2.1.5.2. Fourier Transforms
  • 2.1.5.3. Discrete Fourier Transforms
  • 2.2. Image Acquisition
  • 2.3. Imaging Systems
  • 2.3.1. Electronic Scanners
  • 2.3.1.1. Vidicon Systems
  • 2.3.1.2. Image Dissectors
  • 2.3.2. Solid-State Sensors
  • 2.3.2.1. CCD Cameras
  • 2.3.2.2. CID Cameras
  • 2.3.3. Mechanical Scanners
  • 2.4. Video Digitizers
  • 2.5. Digitized Imagery
  • 2.6. Summary
  • Chapter 3. Spatial Transformations
  • 3.1. Definitions
  • 3.1.1. Forward Mapping
  • 3.1.2. Inverse Mapping
  • 3.2. General Transformation Matrix
  • 3.2.1. Homogeneous Coordinates
  • 3.3. Affine Transformations
  • 3.3.1. Translation
  • 3.3.2. Rotation
  • 3.3.3. Scale
  • 3.3.4. Shear
  • 3.3.5. Composite Transformations
  • 3.3.6. Inverse
  • 3.3.7. Inferring Affine Transformations
  • 3.4. Perspective Transformations
  • 3.4.1. Inverse
  • 3.4.2. Inferring Perspective Transformations
  • 3.4.2.1. Case 1: Square-to-Quadrilateral
  • 3.4.2.2. Case 2: Quadrilateral-to-Square
  • 3.4.2.3. Case 3: Quadrilateral-to-Quadrilateral
  • 3.5. Bilinear Transformations
  • 3.5.1. Bilinear Interpolation
  • 3.5.2. Separability
  • 3.5.3. Inverse
  • 3.5.4. Interpolation Grid
  • 3.6. Polynomial Transformations
  • 3.6.1. Inferring Polynomial Coefficients
  • 3.6.2. Pseudoinverse Solution
  • 3.6.3. Least-Squares With Ordinary Polynomials
  • 3.6.4. Least-Squares With Orthogonal Polynomials
  • 3.6.5. Weighted Least-Squares
  • 3.7. Piecewise Polynomial Transformations
  • 3.7.1. A Surface Fitting Paradigm for Geometric Correction
  • 3.7.2. Procedure
  • 3.7.3. Triangulation
  • 3.7.4. Linear Triangular Patches
  • 3.7.5. Cubic Triangular Patches
  • 3.8. Global Splines
  • 3.8.1. Basis Functions
  • 3.8.2. Regularization
  • 3.8.2.1. Grimson, 1981
  • 3.8.2.2. Terzopoulos, 1984
  • 3.8.2.3. Discontinuity Detection
  • 3.8.2.4. Boult and Kender, 1986
  • 3.8.2.5. A Definition of Smoothness
  • 3.9. Summary
  • Chapter 4. Sampling Theory
  • 4.1. Introduction
  • 4.2. Sampling
  • 4.3. Reconstruction
  • 4.3.1. Reconstruction Conditions
  • 4.3.2. Ideal Low-Pass Filter
  • 4.3.3. Sinc Function
  • 4.4. Nonideal Reconstruction
  • 4.5. Aliasing
  • 4.6. Antialiasing
  • 4.7. Summary
  • Chapter 5. Image Resampling
  • 5.1. Introduction
  • 5.2. Ideal Image Resampling
  • 5.3. Interpolation
  • 5.4. Interpolation Kernels
  • 5.4.1. Nearest Neighbor
  • 5.4.2. Linear Interpolation
  • 5.4.3. Cubic Convolution
  • 5.4.4. Two-Parameter Cubic Filters
  • 5.4.5. Cubic Splines
  • 5.4.5.1. B-Splines
  • 5.4.5.2. Interpolating B-Splines
  • 5.4.6. Windowed Sinc Function
  • 5.4.6.1. Hann and Hamming Windows
  • 5.4.6.2. Blackman Window
  • 5.4.6.3. Kaiser Window
  • 5.4.6.4. Lanczos Window
  • 5.4.6.5. Gaussian Window
  • 5.4.7. Exponential Filters
  • 5.5. Comparison of Interpolation Methods
  • 5.6. Implementation
  • 5.6.1. Interpolation with Coefficient Bins
  • 5.6.2. Fant's Resampling Algorithm
  • 5.7. Discussion
  • Chapter 6. Antialiasing
  • 6.1. Introduction
  • 6.1.1. Point Sampling
  • 6.1.2. Area Sampling
  • 6.1.3. Space-Invariant Filtering
  • 6.1.4. Space-Variant Filtering
  • 6.2. Regular Sampling
  • 6.2.1. Supersampling
  • 6.2.2. Adaptive Supersampling
  • 6.2.3. Reconstruction from Regular Samples
  • 6.3. Irregular Sampling
  • 6.3.1. Stochastic Sampling
  • 6.3.2. Poisson Sampling
  • 6.3.3. Jittered Sampling
  • 6.3.4. Point-Diffusion Sampling
  • 6.3.5. Adaptive Stochastic Sampling
  • 6.3.6. Reconstruction from Irregular Samples
  • 6.4. Direct Convolution
  • 6.4.1. Catmull, 1974
  • 6.4.2. Blinn and Newell, 1976
  • 6.4.3. Feibush, Levoy, and Cook, 1980
  • 6.4.4. Gangnet, Perny, and Coueignoux, 1982
  • 6.4.5. Greene and Heckbert, 1986
  • 6.5. Prefiltering
  • 6.5.1. Pyramids
  • 6.5.2. Summed-Area Tables
  • 6.6. Frequency Clamping
  • 6.7. Antialiased Lines and Text
  • 6.8. Discussion
  • Chapter 7. Scanline Algorithms
  • 7.1. Introduction
  • 7.1.1. Forward Mapping
  • 7.1.2. Inverse Mapping
  • 7.1.3. Separable Mapping
  • 7.2. Incremental Algorithms
  • 7.2.1. Texture Mapping
  • 7.2.2. Gouraud Shading
  • 7.2.3. Incremental Texture Mapping
  • 7.2.4. Incremental Perspective Transformations
  • 7.2.5. Approximation
  • 7.2.6. Quadratic Interpolation
  • 7.2.7. Cubic Interpolation
  • 7.3. Rotation
  • 7.3.1. Braccini and Marino, 1980
  • 7.3.2. Weiman, 1980
  • 7.3.3. Catmull and Smith, 1980
  • 7.3.4. Paeth, 1986/ Tanaka, et. al., 1986
  • 7.3.5. Cordic Algorithm
  • 7.4. 2-Pass Transforms
  • 7.4.1. Catmull and Smith, 1980
  • 7.4.1.1. First Pass
  • 7.4.1.2. Second Pass
  • 7.4.1.3. 2-Pass Algorithm
  • 7.4.1.4. An Example: Rotation
  • 7.4.1.5. Another Example: Perspective
  • 7.4.1.6. Bottleneck Problem
  • 7.4.1.7. Foldover Problem
  • 7.4.2. Fraser, Schowengerdt, and Briggs, 1985
  • 7.3.3. Smith, 1987
  • 7.5. 2-Pass Mesh Warping
  • 7.5.1. Special Effects
  • 7.5.2. Description of the Algorithm
  • 7.5.2.1. First Pass
  • 7.5.2.2. Second Pass
  • 7.5.2.3. Discussion
  • 7.5.3. Examples
  • 7.5.4. Source Code
  • 7.6. More Separable Mappings
  • 7.6.1. Perspective Projection: Robertson, 1987
  • 7.6.2. Warping Among Arbitrary Planar Shapes: Wolberg, 1988
  • 7.6.3. Spatial Lookup Tables: Wolberg and Boult, 1989
  • 7.7. Separable Image Warping
  • 7.7.1. Spatial Lookup Tables
  • 7.7.2. Intensity Resampling
  • 7.7.3. Coordinate Resampling
  • 7.7.4. Distortions and Errors
  • 7.7.4.1. Filtering Errors
  • 7.7.4.2. Shear
  • 7.7.4.3. Perspective
  • 7.7.4.4. Rotation
  • 7.7.4.5. Distortion Measures
  • 7.7.4.6. Bottleneck Distortion
  • 7.7.5. Foldover Problem
  • 7.7.5.1. Representing Foldovers
  • 7.7.5.2. Tracking Foldovers
  • 7.7.5.3. Storing Information From Foldovers
  • 7.7.5.4. Intensity Resampling with Foldovers
  • 7.7.6. Compositor
  • 7.7.7. Examples
  • 7.8. Discussion
  • Chapter 8. Epilogue
  • Appendix 1. Fast Fourier Transforms
  • A1.1. Discrete Fourier Transform
  • A1.2. Danielson-Lanczos Lemma
  • A1.2.1. Butterfly Flow Graph
  • A1.2.2. Putting It All Together
  • A1.2.3. Recursive FFT Algorithm
  • A1.2.4. Cost of Computation
  • A1.3. Cooley-Tukey Algorithm
  • A1.3.1. Computational Cost
  • A1.4. Cooley-Sande Algorithm
  • A1.5. Source Code
  • A1.5.1. Recursive FFT Algorithm
  • A1.5.2. Cooley-Tukey FFT Algorithm
  • Appendix 2. Interpolating Cubic Splines
  • A2.1. Definition
  • A2.2. Constraints
  • A2.3. Solving for the Spline Coefficients
  • A2.3.1. Derivation of A[subscript 2]
  • A2.3.2. Derivation of A[subscript 3]
  • A2.3.3. Derivation of A[subscript 1] and A[subscript 3]
  • A2.4. Evaluting the Unknown Derivatives
  • A2.4.1. First Derivatives
  • A2.4.2. Second Derivatives
  • A2.4.3. Boundary Conditions
  • A2.5. Source Code
  • A2.5.1. Ispline
  • A2.5.2. Ispline_gen
  • Appendix 3. Forward Difference Method
  • References
  • Index