Quinoa genome /

Saved in:
Bibliographic Details
Imprint:Cham : Springer, 2021.
Description:1 online resource
Language:English
Series:Compendium of Plant Genomes
Compendium of plant genomes.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12610581
Hidden Bibliographic Details
Other authors / contributors:Schmöckel, Sandra M. editor.
ISBN:9783030652371
3030652378
303065236X
9783030652364
Summary:This book focuses on quinoa, providing background information on its history, summarizing recent genetic and genomic advances, and offering directions for future research. Meeting the caloric and nutritional demands of our growing population will not only require increases in overall food production, but also the development of new crops that can be grown sustainably in agricultural environments that are increasingly susceptible to degradation. Quinoa is an ancient crop native to the Andean region of South America that has recently gained international attention because its seeds are high in protein, particularly in essential amino acids. Quinoa is also highly tolerant of abiotic stresses, including drought, frost and salinity. For these reasons, quinoa has the potential to help address issues of food security - a potential that was recognized when the United Nations declared 2013 the International Year of Quinoa. However, more effort is needed to improve quinoa agronomically and to understand the mechanisms of its abiotic stress tolerance; the recent development of genetic and genomic tools, including a reference genome sequence, will now help accelerate research in these areas.
Other form:Print version: 303065236X 9783030652364
Standard no.:10.1007/978-3-030-65237-1

MARC

LEADER 00000cam a2200000Ia 4500
001 12610581
005 20210813213023.0
006 m o d
007 cr |n|||||||||
008 210207s2021 sz o 000 0 eng d
019 |a 1237407970  |a 1240642256 
020 |a 9783030652371  |q (electronic bk.) 
020 |a 3030652378  |q (electronic bk.) 
020 |z 303065236X 
020 |z 9783030652364 
024 7 |a 10.1007/978-3-030-65237-1  |2 doi 
035 |a (OCoLC)1236368271  |z (OCoLC)1237407970  |z (OCoLC)1240642256 
040 |a YDX  |b eng  |c YDX  |d EBLCP  |d N$T  |d OCLCO  |d SFB  |d GW5XE  |d OCLCO  |d OCLCF  |d UKAHL 
049 |a MAIN 
050 4 |a SB177.Q55 
072 7 |a PST  |2 bicssc 
072 7 |a SCI011000  |2 bisacsh 
072 7 |a PST  |2 thema 
072 7 |a PSAK  |2 thema 
245 0 0 |a Quinoa genome /  |c Sandra M. Schmöckel, editor. 
260 |a Cham :  |b Springer,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Compendium of Plant Genomes 
505 0 |a Intro -- Preface to the Series -- Preface -- Compendium of Plant Genomes: Quinoa -- Contents -- Contributors -- Abbreviations -- 1 History of the Quinuas in South America -- Abstract -- 1.1 Origin -- 1.2 Geographical Distribution -- 1.3 Current Production Centers -- 1.3.1 Colombia -- 1.3.2 Ecuador -- 1.3.3 Peru -- 1.3.4 Bolivia -- 1.3.5 Chile -- 1.3.6 Argentina -- 1.4 Main Types of Quinuas -- 1.5 Research Advances -- 1.6 Traditional Quinoa Utilization -- 1.6.1 Preparation of the Llipt'a O (Llujt'a) -- 1.6.2 Traditional Use of Leaves -- References 
505 8 |a 2 Botanical Context for Domestication in South America -- Abstract -- 2.1 Introduction -- 2.2 Quinoa Wild Ancestors and Relationships with Related Species -- 2.3 Quinoa Genetic Structure -- 2.4 Where and When Domestication Occurred -- 2.4.1 Geographic Patterns of Variation in Genetic Variability -- 2.4.2 Archaeological Evidence -- 2.5 Traits Affected by Domestication -- 2.5.1 Seed Size and Morphology -- 2.5.2 Starch Forms -- 2.5.3 Seed Shattering -- 2.5.4 Plant Architecture -- 2.5.5 Roots -- 2.5.6 Climate Adaptation -- 2.5.7 Aesthetic Selection -- 2.5.8 Saponin Content 
505 8 |a 2.6 Geographical Distribution of the Domestication Syndrome. An Example in North West Argentina -- 2.7 Concluding Remarks and Some Topics for Research -- References -- 3 Botanical Context for Domestication in North America -- Abstract -- 3.1 Introduction -- 3.1.1 Ecological Context of C. berlandieri -- 3.1.2 Molecular Studies of C. berlandieri -- 3.1.3 Potential Diploid Progenitor Gene Pools of the ATGC in North America -- 3.2 Descriptions of C. berlandieri Subspecies and Botanical Varieties -- 3.2.1 C. berlandieri subsp. berlandieri var. boscianum 
505 8 |a 3.2.2 C. berlandieri subsp. berlandieri var. berlandieri -- 3.2.3 C. berlandieri subsp. berlandieri var. macrocalycium -- 3.2.4 C. berlandieri subsp. berlandieri var. sinuatum -- 3.2.5 C. berlandieri subsp. berlandieri var. zschackei -- 3.2.6 C. berlandieri subsp. jonesianum -- 3.2.7 C. berlandieri subsp. nuttaliae -- 3.3 Breeding Potential of C. berlandieri -- 3.4 Conclusions -- References -- 4 Quinoa Cytogenetics -- Abstract -- 4.1 Genome Constitution of Polyploid C. Quinoa and Related Species -- 4.2 Karyotype and Chromosome Banding -- 4.3 Genome Size 
505 8 |a 4.4 Repetitive Sequence Organization and Evolution -- 4.4.1 Tandem Repetitive Sequences -- 4.4.2 Disperse Repetitive Sequences -- 4.5 Chenopodium quinoa Is a Polysomatic Plant -- References -- 5 A Chromosome-Scale Quinoa Reference Genome Assembly -- Abstract -- 5.1 Introduction -- 5.2 Quinoa Accession PI 614886 -- 5.3 Primary Sequencing by PacBio SMRT® Sequencing Technology -- 5.3.1 PacBio SMRT Sequencing Technology -- 5.3.2 Quinoa Genomic DNA Preparation and PacBio Sequencing -- 5.4 Scaffolding of the Assembly with BioNano Genomics (Optical Maps) 
520 |a This book focuses on quinoa, providing background information on its history, summarizing recent genetic and genomic advances, and offering directions for future research. Meeting the caloric and nutritional demands of our growing population will not only require increases in overall food production, but also the development of new crops that can be grown sustainably in agricultural environments that are increasingly susceptible to degradation. Quinoa is an ancient crop native to the Andean region of South America that has recently gained international attention because its seeds are high in protein, particularly in essential amino acids. Quinoa is also highly tolerant of abiotic stresses, including drought, frost and salinity. For these reasons, quinoa has the potential to help address issues of food security - a potential that was recognized when the United Nations declared 2013 the International Year of Quinoa. However, more effort is needed to improve quinoa agronomically and to understand the mechanisms of its abiotic stress tolerance; the recent development of genetic and genomic tools, including a reference genome sequence, will now help accelerate research in these areas. 
650 0 |a Quinoa  |x Genetics. 
650 0 |a Plant genetics.  |0 http://id.loc.gov/authorities/subjects/sh85102745 
650 0 |a Plant breeding.  |0 http://id.loc.gov/authorities/subjects/sh85102702 
650 0 |a Agriculture.  |0 http://id.loc.gov/authorities/subjects/sh85002415 
650 7 |a Agriculture.  |2 fast  |0 (OCoLC)fst00801355 
650 7 |a Plant breeding.  |2 fast  |0 (OCoLC)fst01065287 
650 7 |a Plant genetics.  |2 fast  |0 (OCoLC)fst01065459 
655 4 |a Electronic books. 
700 1 |a Schmöckel, Sandra M.  |e editor. 
776 0 8 |i Print version:  |z 303065236X  |z 9783030652364  |w (OCoLC)1203964135 
830 0 |a Compendium of plant genomes.  |0 http://id.loc.gov/authorities/names/no2014166558 
903 |a HeVa 
929 |a oclccm 
999 f f |i c93a04b5-8fd1-5f8d-bc19-dd7b4101f739  |s 3803b1b8-fffd-5288-b4c2-38d918422799 
928 |t Library of Congress classification  |a SB177.Q55  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-65237-1  |z Springer Nature  |g ebooks  |i 12626189