Big data approach to firm level innovation in manufacturing : industrial economics /

Saved in:
Bibliographic Details
Author / Creator:Hosseini, Seyed Mehrshad Parvin.
Imprint:Singapore : Springer, 2020.
Description:1 online resource
Language:English
Series:SpringerBriefs in applied sciences and technology
SpringerBriefs in applied sciences and technology.
Subject:Production management.
Manufacturing processes -- Technological innovations.
Big data.
Production engineering.
Business & management.
Technical design.
Economics.
Technology & Engineering -- Industrial Engineering.
Business & Economics -- Management Science.
Technology & Engineering -- Industrial Design -- Product.
Business & Economics -- Economics -- General.
Big data
Manufacturing processes -- Technological innovations
Production management
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12607109
Hidden Bibliographic Details
Other authors / contributors:Azizi, Aydin.
ISBN:9789811563003
9811563004
9811562997
9789811562990
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references.
Summary:This book discusses utilizing Big Data and Machine Learning approaches in investigating five aspects of firm level innovation in manufacturing; (1) factors that determine the decision to innovate (2) the extent of innovation (3) characteristics of an innovating firm (4) types of innovation undertaken and (5) the factors that drive and enable different types of innovation. A conceptual model and a cost-benefit framework were developed to explain a firms decision to innovate. To empirically demonstrate these aspects, Big data and machine learning approaches were introduced in the form of a case study. The result of Big data analysis as an inferior method to analyse innovation data was also compared with the results of conventional statistical methods. The implications of the findings of the study for increasing the pace of innovation are also discussed.
Other form:Print version: Hosseini, Seyed Mehrshad Parvin. Big data approach to firm level innovation in manufacturing. Singapore : Springer, 2020 9811562997 9789811562990
Standard no.:10.1007/978-981-15-6300-3.
10.1007/978-981-15-6
LEADER 04562cam a2200721Ia 4500
001 12607109
005 20210813213023.0
006 m o d
007 cr |n|||||||||
008 200819s2020 si ob 000 0 eng d
015 |a GBC0H8181  |2 bnb 
016 7 |a 019871680  |2 Uk 
019 |a 1182852828  |a 1191078411  |a 1198136461  |a 1198819570  |a 1204062494  |a 1226270194 
020 |a 9789811563003  |q (electronic bk.) 
020 |a 9811563004  |q (electronic bk.) 
020 |z 9811562997 
020 |z 9789811562990 
024 7 |a 10.1007/978-981-15-6300-3.  |2 doi 
024 8 |a 10.1007/978-981-15-6 
035 |a (OCoLC)1184056835  |z (OCoLC)1182852828  |z (OCoLC)1191078411  |z (OCoLC)1198136461  |z (OCoLC)1198819570  |z (OCoLC)1204062494  |z (OCoLC)1226270194 
037 |b Springer 
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d LQU  |d ORU  |d OCLCF  |d NLW  |d DCT  |d UKAHL  |d S2H  |d UKMGB  |d OCLCQ  |d OCLCO 
049 |a MAIN 
050 4 |a TS155 
072 7 |a BUS069000.  |2 bisacsh 
072 7 |a KC.  |2 bicssc 
072 7 |a KC.  |2 thema 
072 7 |a KCB.  |2 thema 
100 1 |a Hosseini, Seyed Mehrshad Parvin. 
245 1 0 |a Big data approach to firm level innovation in manufacturing :  |b industrial economics /  |c Seyed Mehrshad Parvin Hosseini, Aydin Azizi. 
260 |a Singapore :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a SpringerBriefs in applied sciences and technology 
504 |a Includes bibliographical references. 
505 0 |a Chapter 1: Introduction to innovation activities -- Chapter 2: The role of SMEs in innovation activities -- Chapter 3: Overview of innovation activities in Southeast Asia -- Chapter 4: From Linear model to Chain Linked model of innovation in reaching firm characteristics that facilitate and lowering the cost of innovation -- Chapter 5: Predicting level of innovation -- Chapter 6: Factors affecting the decision to innovate and related policies. 
520 |a This book discusses utilizing Big Data and Machine Learning approaches in investigating five aspects of firm level innovation in manufacturing; (1) factors that determine the decision to innovate (2) the extent of innovation (3) characteristics of an innovating firm (4) types of innovation undertaken and (5) the factors that drive and enable different types of innovation. A conceptual model and a cost-benefit framework were developed to explain a firms decision to innovate. To empirically demonstrate these aspects, Big data and machine learning approaches were introduced in the form of a case study. The result of Big data analysis as an inferior method to analyse innovation data was also compared with the results of conventional statistical methods. The implications of the findings of the study for increasing the pace of innovation are also discussed. 
650 0 |a Production management.  |0 http://id.loc.gov/authorities/subjects/sh85107216 
650 0 |a Manufacturing processes  |x Technological innovations. 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 7 |a Production engineering.  |2 bicssc 
650 7 |a Business & management.  |2 bicssc 
650 7 |a Technical design.  |2 bicssc 
650 7 |a Economics.  |2 bicssc 
650 7 |a Technology & Engineering  |x Industrial Engineering.  |2 bisacsh 
650 7 |a Business & Economics  |x Management Science.  |2 bisacsh 
650 7 |a Technology & Engineering  |x Industrial Design  |x Product.  |2 bisacsh 
650 7 |a Business & Economics  |x Economics  |x General.  |2 bisacsh 
650 7 |a Big data  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Manufacturing processes  |x Technological innovations  |2 fast  |0 (OCoLC)fst01008193 
650 7 |a Production management  |2 fast  |0 (OCoLC)fst01078309 
655 4 |a Electronic books. 
700 1 |a Azizi, Aydin.  |0 http://id.loc.gov/authorities/names/no2019030818 
776 0 8 |i Print version:  |a Hosseini, Seyed Mehrshad Parvin.  |t Big data approach to firm level innovation in manufacturing.  |d Singapore : Springer, 2020  |z 9811562997  |z 9789811562990  |w (OCoLC)1154861350 
830 0 |a SpringerBriefs in applied sciences and technology.  |0 http://id.loc.gov/authorities/names/no2011104880 
903 |a HeVa 
929 |a oclccm 
999 f f |i 613f49ac-0cdf-58e3-afb8-954a89569e8c  |s 246124ee-a6f7-59cc-a996-fc0dd381184d 
928 |t Library of Congress classification  |a TS155  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-15-6300-3  |z Springer Nature  |g ebooks  |i 12622717