Quantum field theory : a quantum computation approach /

Saved in:
Bibliographic Details
Author / Creator:Meurice, Yannick, author.
Imprint:Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Description:1 online resource (various pagings) : illustrations (some color).
Language:English
Series:IOP ebooks. [2021 collection]
IOP ebooks. 2021 collection.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12558116
Hidden Bibliographic Details
Other authors / contributors:Institute of Physics (Great Britain), publisher.
ISBN:9780750321877
9780750321860
9780750321853
9780750321884
Notes:"Version: 20210201"--Title page verso.
Includes bibliographical references.
Also available in print.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
Yannick Meurice is a Professor at the University of Iowa. He obtained his PhD at U. C. Louvain-la-Neuve in 1985 under the supervision of Jacques Weyers and Gabriele Veneziano. He was a postdoc at CERN and Argonne National Laboratory and a visiting professor at CINVESTAV in Mexico City. He joined the faculty of the Department of Physics and Astronomy at the University of Iowa in 1990. His current work includes lattice gauge theory, tensor renormalization group methods, near conformal gauge theories, critical machine learning, quantum simulations with cold atoms and quantum computing. He is the PI of a multi-institutional DOE HEP QuantISED grant.
Title from PDF title page (viewed on March 17, 2021).
Summary:This book introduces quantum field theory models from a classical point of view. Practical applications are discussed, along with recent progress for quantum computations and quantum simulations experiments. New developments concerning discrete aspects of continuous symmetries and topological solutions in tensorial formulations of gauge theories are also reported. Quantum Field Theory: A Quantum Computation Approach requires no prior knowledge beyond undergraduate quantum mechanics and classical electrodynamics. With exercises involving Mathematica and Python with solutions provided, the book is an ideal guide for graduate students and researchers in high-energy, condensed matter and atomic physics.
Target Audience:Upper level undergraduate/graduate.
Other form:Print version: 9780750321853 9780750321884
Standard no.:10.1088/978-0-7503-2187-7

MARC

LEADER 00000nam a2200000 i 4500
001 12558116
005 20210317101458.0
006 m eo d
007 cr cn |||m|||a
008 210317s2021 enka fob 000 0 eng d
003 ICU
020 |a 9780750321877  |q ebook 
020 |a 9780750321860  |q mobi 
020 |z 9780750321853  |q print 
020 |z 9780750321884  |q myPrint 
024 7 |a 10.1088/978-0-7503-2187-7  |2 doi 
035 |a (IOP)9780750321877 
035 |a (CaBNVSL)thg00082315 
035 |a (OCoLC)1242438982 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC174.45  |b .M487 2021eb 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.144  |2 23 
100 1 |a Meurice, Yannick,  |e author. 
245 1 0 |a Quantum field theory :  |b a quantum computation approach /  |c Yannick Meurice. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2021] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a IOP ebooks. [2021 collection] 
500 |a "Version: 20210201"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 1.1. Goals of the lecture notes -- 1.2. Classical electrodynamics and its symmetries -- 1.3. Field quantization -- 1.4. The need for discreteness in quantum computing -- 1.5. Symmetries and predictive models 
505 8 |a 2. Classical field theory -- 2.1. Classical action, equations of motion and symmetries -- 2.2. Transition to field theory -- 2.3. Symmetries -- 2.4. The Klein-Gordon field -- 2.5. The Dirac field -- 2.6. Maxwell fields -- 2.7. Yang-Mills fields -- 2.8. Linear sigma models -- 2.9. General relativity -- 2.10. Examples of two-dimensional curved spaces -- 2.11. Mathematica notebook for geodesics 
505 8 |a 3. Canonical quantization -- 3.1. A one-dimensional harmonic crystal -- 3.2. The infinite volume and continuum limits -- 3.3. Free KG and Dirac quantum fields in 3 + 1 dimensions -- 3.4. The Hamiltonian formalism for Maxwell's gauge fields 
505 8 |a 4. A practical introduction to perturbative quantization -- 4.1. Overview -- 4.2. Dyson's chronological series -- 4.3. Feynman propagators, Wick's theorem and Feynman rules -- 4.4. Decay rates and cross sections -- 4.5. Radiative corrections and the renormalization program 
505 8 |a 5. The path integral -- 5.1. Overview -- 5.2. Free particle in quantum mechanics -- 5.3. Complex Gaussian integrals and Euclidean time -- 5.4. The Trotter product formula -- 5.5. Models with quadratic potentials -- 5.6. Generalization to field theory -- 5.7. Functional methods for interactions and perturbation theory -- 5.8. Maxwell's fields at Euclidean time -- 5.9. Connection to statistical mechanics -- 5.10. Simple exercises on random numbers and importance sampling -- 5.11. Classical versus quantum 
505 8 |a 6. Lattice quantization of spin and gauge models -- 6.1. Lattice models -- 6.2. Spin models -- 6.3. Complex generalizations and local gauge invariance -- 6.4. Pure gauge theories -- 6.5. Abelian gauge models -- 6.6. Fermions and the Schwinger model 
505 8 |a 7. Tensorial formulations -- 7.1. Remarks about the discreteness of tensor formulations -- 7.2. The Ising model -- 7.3. O(2) spin models -- 7.4. Boundary conditions -- 7.5. Abelian gauge theories -- 7.6. The compact abelian Higgs model -- 7.7. Models with non-abelian symmetries -- 7.8. Fermions 
505 8 |a 8. Conservation laws in tensor formulations -- 8.1. Basic identity for symmetries in lattice models -- 8.2. The O(2) model and models with abelian symmetries -- 8.3. Non-abelian global symmetries -- 8.4. Local abelian symmetries -- 8.5. Generalization of Noether's theorem 
505 8 |a 9. Transfer matrix and Hamiltonian -- 9.1. Transfer matrix for spin models -- 9.2. Gauge theories -- 9.3. U(1) pure gauge theory -- 9.4. Historical aspects of quantum and classical tensor networks -- 9.5. From transfer matrix functions to quantum circuits -- 9.6. Real time evolution for the quantum ising model -- 9.7. Rigorous and empirical Trotter bounds -- 9.8. Optimal Trotter error 
505 8 |a 10. Recent progress in quantum computation/simulation for field theory -- 10.1. Analog simulations with cold atoms -- 10.2. Experimental measurement of the entanglement entropy -- 10.3. Implementation of the abelian Higgs model -- 10.4. A two-leg ladder as an idealized quantum computer -- 10.5. Quantum computers 
505 8 |a 11. The renormalization group method -- 11.1. Basic ideas and historical perspective -- 11.2. Coarse graining and blocking -- 11.3. The Niemeijer-van Leeuwen equation -- 11.4. Tensor renormalization group (TRG) -- 11.5. Critical exponents and finite-size scaling -- 11.6. A simple numerical example with two states -- 11.7. Numerical implementations -- 11.8. Python code -- 11.9. Additional material 
505 8 |a 12. Advanced topics -- 12.1. Lattice equations of motion -- 12.2. A first look at topological solutions on the lattice -- 12.3. Topology of U(1) gauge theory and topological susceptibility -- 12.4. Mathematica notebooks -- 12.5. Large field effects in perturbation theory -- 12.6. Remarks about the strong coupling expansion. 
520 3 |a This book introduces quantum field theory models from a classical point of view. Practical applications are discussed, along with recent progress for quantum computations and quantum simulations experiments. New developments concerning discrete aspects of continuous symmetries and topological solutions in tensorial formulations of gauge theories are also reported. Quantum Field Theory: A Quantum Computation Approach requires no prior knowledge beyond undergraduate quantum mechanics and classical electrodynamics. With exercises involving Mathematica and Python with solutions provided, the book is an ideal guide for graduate students and researchers in high-energy, condensed matter and atomic physics. 
521 |a Upper level undergraduate/graduate. 
530 |a Also available in print. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Yannick Meurice is a Professor at the University of Iowa. He obtained his PhD at U. C. Louvain-la-Neuve in 1985 under the supervision of Jacques Weyers and Gabriele Veneziano. He was a postdoc at CERN and Argonne National Laboratory and a visiting professor at CINVESTAV in Mexico City. He joined the faculty of the Department of Physics and Astronomy at the University of Iowa in 1990. His current work includes lattice gauge theory, tensor renormalization group methods, near conformal gauge theories, critical machine learning, quantum simulations with cold atoms and quantum computing. He is the PI of a multi-institutional DOE HEP QuantISED grant. 
588 0 |a Title from PDF title page (viewed on March 17, 2021). 
650 0 |a Quantum field theory.  |0 http://id.loc.gov/authorities/subjects/sh85109461 
650 0 |a Quantum computing.  |0 http://id.loc.gov/authorities/subjects/sh2014002839 
650 7 |a Quantum physics (quantum mechanics & quantum field theory)  |2 bicssc 
650 7 |a SCIENCE / Physics / Quantum Theory.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher.  |0 http://id.loc.gov/authorities/names/n80085293  |1 http://viaf.org/viaf/146503044 
776 0 8 |i Print version:  |z 9780750321853  |z 9780750321884 
830 0 |a IOP ebooks.  |p 2021 collection. 
856 4 0 |u https://iopscience.iop.org/book/978-0-7503-2187-7  |y IOPscience 
903 |a HeVa 
903 |a HeVa 
929 |a eresource 
999 f f |i 624f854b-4cb1-575f-bbdd-59d167fc9611  |s dece8083-511b-5087-a1cb-cc688d1a67ac 
928 |t Library of Congress classification  |a QC174.45 .M487 2021eb  |l Online  |c UC-FullText  |u https://iopscience.iop.org/book/978-0-7503-2187-7  |z IOPscience  |g ebooks  |i 12477971