Principles of biomedical engineering /

Saved in:
Bibliographic Details
Author / Creator:Madihally, Sundararajan V., author.
Edition:Second edition
Imprint:Norwood, MA : Artech House, [2020]
Description:1 online resource : illustrations
Language:English
Series:Artech House engineering in medicine and biology library
Artech House engineering in medicine & biology series.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12355366
Hidden Bibliographic Details
ISBN:9781630817121
1630817120
9781630817114
1630817112
Notes:Includes bibliographical references and index
Description based on online resource; title from PDF title page (viewed on March 09, 2020)
Other form:Print version: Madihally, Sundararajan V. Principles of Biomedical Engineering, Second Edition Norwood : Artech House,c2019 9781630817114
Table of Contents:
  • Intro
  • Principles of Biomedical Engineering Second Edition
  • Contents
  • CHAPTER 1 Introduction
  • 1.1 Overview
  • 1.2 Roles of Bioengineers
  • 1.3 History of Bioengineering
  • 1.3.1 Development of Biomedical Imaging
  • 1.3.2 Development of Dialysis
  • 1.3.3 The Development of the Heart-Lung Machine
  • 1.3.4 Other Devices
  • 1.4 Sources for Information
  • Problems
  • Selected Bibliography
  • CHAPTER 2 Biotransport
  • 2.1 Overview
  • 2.2 Fundamental Factors
  • 2.2.1 Liquid Compartments
  • 2.2.2 Solute Components
  • 2.2.3 Components in the Gas Phase
  • 2.2.4 Importance of pH
  • 2.3 Diffusion-Mediated Transport
  • 2.3.1 Free Diffusion
  • 2.3.2 Facilitated Diffusion
  • 2.3.3 Active Transport
  • 2.4 Osmosis-Driven Transport
  • 2.4.1 Osmolarity
  • 2.4.2 Tonicity
  • 2.4.3 Osmotic Pressure
  • 2.5 Combined Osmosis and Pressure Gradient-Driven Transport
  • 2.6 Transport of Macromolecules
  • Problems
  • References
  • CHAPTER 3 Bioelectrical Phenomena
  • 3.1 Overview
  • 3.2 Membrane Potential
  • 3.2.1 Nernst Equation
  • 3.2.2 Donnan Equilibrium
  • 3.2.3 Goldman Equation
  • 3.3 Electrical Equivalent Circuit
  • 3.3.1 Cell Membrane Conductance
  • 3.3.2 Cell Membrane as a Capacitor
  • 3.3.3 Resistance-Capacitance Circuit
  • 3.3.4 Action Potential
  • 3.4 Principles of Bioelectrodes
  • 3.4.1 Electrode-Electrolyte Interface
  • 3.4.2 Potential Monitoring Electrodes
  • 3.4.3 Amperometric Devices
  • 3.4.4 Intracellular Recording of Bioelectricity
  • 3.5 Volume Conductors
  • 3.5.1 Electric Field
  • 3.5.2 Electrical Potential Energy
  • 3.5.3 Conservation of Charge
  • 3.5.4 Measuring Electrical Activity of Tissues: Example of Electrocardiogram
  • 3.5.5 Biopotential Recording Practicalities
  • Problems
  • References
  • Selected Bibliography
  • CHAPTER 4 Biofluid Flow
  • 4.1 Overview
  • 4.2 Fluid Flow Characteristics
  • 4.2.1 Conservation of Mass
  • 4.2.2 Inertial and Viscous Forces
  • 4.2.3 Conservation of Momentum
  • 4.3 Nonidealities in Biological Systems
  • 4.3.1 Oscillatory and Pulsating Flows
  • 4.3.2 Alterations in Viscosity
  • 4.3.3 Fluid Flow in Microelectromechanical Systems (MEMS)
  • 4.4 Conservation of Energy
  • 4.4.1 Different Energy Forms
  • 4.4.2 Energy Balance in the Body
  • 4.4.3 Energy Expenditure Calculations
  • 4.5 Fluid Power
  • 4.5.1 Power Calculations in a Cardiac Cycle
  • 4.5.2 The Efficiency of a Pump
  • 4.5.3 Pumps in Series and Parallel
  • 4.6 Optimization Principle for Fluid Transport
  • 4.6.1 Minimum Work of Circulation
  • Problems
  • References
  • Selected Bibliography
  • CHAPTER 5 Biomechanics
  • 5.1 Overview
  • 5.2 Conservation of Momentum in Solids
  • 5.2.1 Different Forces Acting on the Body
  • 5.2.2 Angular Motion
  • 5.2.3 Impulse-Momentum Relation
  • 5.2.4 Gait Analysis (Motion Analysis)
  • 5.3 Ideal Stress-Strain Characteristics
  • 5.3.1 Structural Parameters and Material Parameters
  • 5.3.2 Axial Stress and Strain
  • 5.3.3 Shear Stress
  • 5.3.4 Bending
  • 5.3.5 Torsion
  • 5.4 Nonidealities in Stress-Strain Characterization