Spectroscopic probes of quantum matter /

Saved in:
Bibliographic Details
Author / Creator:Berthod, Christophe, author.
Imprint:Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Description:1 online resource (various pagings) : illustrations (some color).
Language:English
Series:[IOP release 5]
IOP expanding physics, 2053-2563
IOP (Series). Release 5.
IOP expanding physics.
Subject:Spectrum analysis.
Quantum theory.
Condensed matter physics (liquid state & solid state physics).
SCIENCE / Physics / Condensed Matter.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11770840
Hidden Bibliographic Details
Other authors / contributors:Institute of Physics (Great Britain), publisher.
ISBN:9780750317412
9780750317405
9780750317399
Notes:"Version: 20181101"--Title page verso.
Includes bibliographical references.
Also available in print.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
Christophe Berthod is a senior lecturer at the Department of Quantum Matter Physics at the University of Geneva, Switzerland. He obtained his PhD in physics in 1998 and specializes in research in condensed-matter physics and computational physics.
Title from PDF title page (viewed on December 14, 2018).
Summary:The contemporary understanding of matter is based on the quantum theory, which envisions large collections of particles interacting with each other and with their environment. Spectroscopic probes based for instance on light change the environment and trigger a collective response of the particles. This book based on a graduate-level course explains the underpinnings of many-body quantum theory and exposes the main methodologies for calculations, before describing, with the support of practical examples and short computer codes, how the spectroscopic techniques are represented within the theory and how their outcome is interpreted as a probe of the correlations between quantum particles.
Target Audience:Graduate Condensed Matter Physics students, researchers and lecturers.
Other form:Print version: 9780750317399
Standard no.:10.1088/978-0-7503-1741-2
LEADER 05931nam a2200733 i 4500
001 11770840
003 ICU
005 20190725164451.8
006 m eo d
007 cr cn |||m|||a
008 181214s2018 enka ob 000 0 eng d
020 |a 9780750317412  |q ebook 
020 |a 9780750317405  |q mobi 
020 |z 9780750317399  |q print 
024 7 |a 10.1088/978-0-7503-1741-2  |2 doi 
035 |a (IOP)9780750317412 
035 |a (CaBNVSL)thg00978146 
035 |a (OCoLC)1080122335 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC451  |b .B477 2018eb 
072 7 |a PHFC  |2 bicssc 
072 7 |a SCI077000  |2 bisacsh 
082 0 4 |a 541/.28  |2 23 
100 1 |a Berthod, Christophe,  |e author.  |0 http://id.loc.gov/authorities/names/no2019037318  |1 http://viaf.org/viaf/1213154441723335460000 
245 1 0 |a Spectroscopic probes of quantum matter /  |c Christophe Berthod. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a [IOP release 5] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20181101"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 1.1. Nuclear scattering and density-density correlation function -- 1.2. Linear response and retarded correlation functions -- 1.3. Thermodynamic properties and Green's function 
505 8 |a part I. Digest of many-body theory. 2. Elements of quantum mechanics -- 2.1. Thermodynamics of quantum systems -- 2.2. Time dependence -- 2.3. Second quantization -- 2.4. Independent electrons -- 2.5. Phonons -- 2.6. Magnons 
505 8 |a 3. Correlation functions : definitions and properties -- 3.1. A zoo of correlation functions -- 3.2. Lehmann spectral representation -- 3.3. Independent particles -- 3.4. Analytic properties and sum rules 
505 8 |a 4. Imaginary-time formalism -- 4.1. Motivation -- 4.2. Correlation functions in imaginary time -- 4.3. Analytic continuation 
505 8 |a 5. Calculating correlation functions -- 5.1. Perturbation theory and Feynman diagrams -- 5.2. Equation-of-motion method 
505 8 |a 6. Response of matter to applied fields -- 6.1. Linear and quadratic response -- 6.2. Response functions, susceptibilities -- 6.3. Examples of couplings -- 6.4. Response functions and imaginary-time functions 
505 8 |a part II. Spectroscopic probes. 7. External photoemission (XPS, PES, ARPES) -- 7.1. Response theory of external photoemission -- 7.2. Sudden approximation and spectral function -- 7.3. The notion of quasi-particle -- 7.4. Beyond the sudden approximation 
505 8 |a 8. Electrical resistivity -- 8.1. Kubo formula for conductivity -- 8.2. Derivation of the Drude formula -- 8.3. Residual resistivity of metals and impurity scattering -- 8.4. T2 law and electron-electron interaction -- 8.5. Magnetic impurities and Kondo effect -- 8.6. Effects beyond quasi-particle scattering 
505 8 |a 9. Electron tunneling -- 9.1. Electron tunneling : a phenomenon out of equilibrium -- 9.2. Tunneling-Hamiltonian formalism -- 9.3. The tunneling matrix element -- 9.4. DOS and electron dispersion -- 9.5. LDOS as seen by STM 
505 8 |a 10. Neutron scattering -- 10.1. The differential scattering cross section -- 10.2. Nuclear scattering -- 10.3. Magnetic scattering. 
520 3 |a The contemporary understanding of matter is based on the quantum theory, which envisions large collections of particles interacting with each other and with their environment. Spectroscopic probes based for instance on light change the environment and trigger a collective response of the particles. This book based on a graduate-level course explains the underpinnings of many-body quantum theory and exposes the main methodologies for calculations, before describing, with the support of practical examples and short computer codes, how the spectroscopic techniques are represented within the theory and how their outcome is interpreted as a probe of the correlations between quantum particles. 
521 |a Graduate Condensed Matter Physics students, researchers and lecturers. 
530 |a Also available in print. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Christophe Berthod is a senior lecturer at the Department of Quantum Matter Physics at the University of Geneva, Switzerland. He obtained his PhD in physics in 1998 and specializes in research in condensed-matter physics and computational physics. 
588 0 |a Title from PDF title page (viewed on December 14, 2018). 
650 0 |a Spectrum analysis.  |0 http://id.loc.gov/authorities/subjects/sh85126423 
650 0 |a Quantum theory.  |0 http://id.loc.gov/authorities/subjects/sh85109469 
650 7 |a Condensed matter physics (liquid state & solid state physics).  |2 bicssc 
650 7 |a SCIENCE / Physics / Condensed Matter.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher.  |0 http://id.loc.gov/authorities/names/n80085293  |1 http://viaf.org/viaf/146503044 
776 0 8 |i Print version:  |z 9780750317399 
830 0 |a IOP (Series).  |p Release 5. 
830 0 |a IOP expanding physics.  |0 http://id.loc.gov/authorities/names/no2015052390 
856 4 0 |u https://iopscience.iop.org/book/978-0-7503-1741-2  |y IOPscience 
903 |a HeVa 
903 |a HeVa 
929 |a eresource 
999 f f |i ba773597-7e3b-5fc4-a278-bbf29aaba853  |s 587756da-ba32-596c-98eb-7782d2caad0d 
928 |t Library of Congress classification  |a QC451 .B477 2018eb  |l Online  |c UC-FullText  |u https://iopscience.iop.org/book/978-0-7503-1741-2  |z IOPscience  |g ebooks  |i 11222021