Optimization of Cooling Systems.

Saved in:
Bibliographic Details
Author / Creator:Zietlow, David.
Imprint:Momentum Press, 2016.
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11755553
Hidden Bibliographic Details
ISBN:1606504754
9781606504758
Notes:Print version record.
Summary:Most energy systems are suboptimized. Businesses and consumers are so focused on initial costs that they underestimate the effect of operating the energy system over its life. This suboptimization creates a fantastic opportunity to not only make a wise decision financially but also reduces the environmental impact of energy systems. There are three simple tools, known to all mechanical engineers, that when added to traditional thermodynamics enable an engineer to find the true optimum of an energy system. In this concise textbook, you will be equipped with these tools and will understand how they are applied to cooling systems. The target audiences for this textbook are mechanical engineering students in their first semester of thermodynamics all the way to engineers with up to 20 years of experience. First semester thermodynamic students will benefit the most from Appendices A and C in Chapter 1. The rest of Chapter 1 is written at a level where any undergraduate mechanical engineering student who is taking heat transfer will be able to quickly assimilate the knowledge. The textbook also has the depth to handle the latent load, which will provide the practicing engineer with the tools necessary to handle the complexity of real cooling systems.

MARC

LEADER 00000cam a2200000Ma 4500
001 11755553
005 20210426223315.5
006 m o d
007 cr |n|||||||||
008 160115s2016 xx o 000 0 eng d
019 |a 935192122 
020 |a 1606504754  |q (electronic bk.) 
020 |a 9781606504758  |q (electronic bk.) 
035 |a (OCoLC)934769692  |z (OCoLC)935192122 
037 |a 887925  |b MIL 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d NYMPP  |d OCLCO  |d EBLCP  |d OCLCF  |d YDXCP  |d OCLCQ  |d N$T  |d OCLCQ  |d MERUC  |d MERER  |d OCLCQ  |d STF  |d OCLCQ  |d G3B  |d IGB  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a TH7687.7  |b .Z546 2016 
072 7 |a TEC  |x 005050  |2 bisacsh 
100 1 |a Zietlow, David. 
245 1 0 |a Optimization of Cooling Systems. 
260 |b Momentum Press,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a 1. Optimization of cooling systems -- Introduction -- Optimization of the basic vapor-compression cycle -- Accounting for condensation of water vapor -- Determination of the overall heat transfer coefficient (U) -- Empirical parameter optimization -- Chapter summary -- Problems -- Appendix A. Summary of the deductive problem-solving strategy -- Appendix B. Optimization of a vapor-compression cycle, basic model -- Appendix C. Optimization of a vapor-compression cycle, simple model -- Nomenclature. 
505 8 |a 2. Optimization of the envelope and equipment -- Introduction -- Optimization of insulation for an envelope -- Parameter optimization of initial cost -- Optimum cooling system -- Chapter summary -- Problems -- Appendix A. System of equations to optimize the envelope of a structure -- Nomenclature. 
505 8 |a 3. Optimization of chillers -- Introduction -- Model validation -- Optimization of design variables -- Sensitivity analysis -- Environmental issues -- Chapter summary -- Index. 
520 3 |a Most energy systems are suboptimized. Businesses and consumers are so focused on initial costs that they underestimate the effect of operating the energy system over its life. This suboptimization creates a fantastic opportunity to not only make a wise decision financially but also reduces the environmental impact of energy systems. There are three simple tools, known to all mechanical engineers, that when added to traditional thermodynamics enable an engineer to find the true optimum of an energy system. In this concise textbook, you will be equipped with these tools and will understand how they are applied to cooling systems. The target audiences for this textbook are mechanical engineering students in their first semester of thermodynamics all the way to engineers with up to 20 years of experience. First semester thermodynamic students will benefit the most from Appendices A and C in Chapter 1. The rest of Chapter 1 is written at a level where any undergraduate mechanical engineering student who is taking heat transfer will be able to quickly assimilate the knowledge. The textbook also has the depth to handle the latent load, which will provide the practicing engineer with the tools necessary to handle the complexity of real cooling systems. 
650 0 |a Cooling systems.  |0 http://id.loc.gov/authorities/subjects/sh2014001630 
650 0 |a Structural optimization.  |0 http://id.loc.gov/authorities/subjects/sh88004614 
650 7 |a TECHNOLOGY & ENGINEERING  |x Construction  |x Heating, Ventilation & Air Conditioning.  |2 bisacsh 
650 7 |a Cooling systems.  |2 fast  |0 (OCoLC)fst01910931 
650 7 |a Structural optimization.  |2 fast  |0 (OCoLC)fst01135705 
655 4 |a Electronic books. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 63559670-c08a-5daa-a799-b5ba37169720  |s 2a8bff59-c1ef-5b73-a431-36db6357bebd 
928 |t Library of Congress classification  |a TH7687.7 .Z546 2016  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1146902  |z eBooks on EBSCOhost  |g ebooks  |i 12434458