D∞-Modules on Smooth Rigid Analytic Varieties and Locally Analytic Representations/

Saved in:
Bibliographic Details
Author / Creator:Fan, Tianqi, author.
Imprint:2017.
Ann Arbor : ProQuest Dissertations & Theses, 2017
Description:1 electronic resource (79 pages)
Language:English
Format: E-Resource Dissertations
Local Note:School code: 0330
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11715102
Hidden Bibliographic Details
Other authors / contributors:University of Chicago. degree granting institution.
ISBN:9780355078435
Notes:Advisors: Matthew Emerton.
Dissertation Abstracts International, Volume: 78-12(E), Section: B.
English
Summary:In this article, we construct the abelian category of coadmissible p-adic D∞-modules on a smooth rigid analytic variety over a complete discrete valued field. We also consider equivariant D∞-modules and prove a p-adic analogue of the Beilinson-Bernstein localization theorem for admissible locally analytic representations.
LEADER 02544ntm a22004333i 4500
001 11715102
005 20170926110231.5
007 cr un|---|||||
008 170926s2017 miu|||||om |||||||eng d
003 ICU
020 |a 9780355078435 
035 |a (MiAaPQD)AAI10275650 
035 |a (OCoLC)1078483693 
035 |a AAI10275650 
040 |a MiAaPQD  |b eng  |c MiAaPQD  |e rda 
100 1 |a Fan, Tianqi,  |e author. 
245 1 0 |a D∞-Modules on Smooth Rigid Analytic Varieties and Locally Analytic Representations/  |c Tianqi Fan. 
260 |c 2017. 
264 1 |a Ann Arbor :   |b ProQuest Dissertations & Theses,   |c 2017 
300 |a 1 electronic resource (79 pages) 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
500 |a Advisors: Matthew Emerton. 
502 |b Ph.D.  |c University of Chicago, Division of the Physical Sciences, Department of Mathematics  |d 2017. 
510 4 |a Dissertation Abstracts International,   |c Volume: 78-12(E), Section: B. 
520 |a In this article, we construct the abelian category of coadmissible p-adic D∞-modules on a smooth rigid analytic variety over a complete discrete valued field. We also consider equivariant D∞-modules and prove a p-adic analogue of the Beilinson-Bernstein localization theorem for admissible locally analytic representations. 
546 |a English 
590 |a School code: 0330 
690 |a Mathematics. 
710 2 |a University of Chicago.  |e degree granting institution.  |0 http://id.loc.gov/authorities/names/n79058404  |1 http://viaf.org/viaf/143657677 
720 1 |a Matthew Emerton  |e degree supervisor. 
856 4 0 |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10275650  |y ProQuest 
856 4 0 |u https://dx.doi.org/10.6082/M1JQ0Z4D  |y Knowledge@UChicago 
903 |a HeVa 
929 |a eresource 
999 f f |i 00536a55-2df0-5722-85bd-39ba8888847a  |s 6d19d69f-a1f7-5e43-97f7-454156505ff2 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10275650  |z ProQuest  |g ebooks  |i 11159238 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u https://dx.doi.org/10.6082/M1JQ0Z4D  |z Knowledge@UChicago  |g ebooks  |i 11159239