Teichmuller dynamics and Hodge theory /

Saved in:
Bibliographic Details
Author / Creator:Filip, Simion, author.
Ann Arbor : ProQuest Dissertations & Theses, 2016
Description:1 electronic resource (126 pages)
Format: E-Resource Dissertations
Local Note:School code: 0330
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11674565
Hidden Bibliographic Details
Other authors / contributors:University of Chicago. degree granting institution.
Notes:Advisors: Alex Eskin Committee members: Madhav Vithal Nori.
Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Summary:This thesis is concerned with applications of Hodge theory in Teichmuller dynamics. Recall that the moduli space pairs (X, o) of Riemann surfaces with a holomorphic 1-form carries a natural action of the group SL(2,R). The diagonal subgroup gives the Teichmuller geodesic flow, while full SL(2,R)-orbits give Teichmuller disks. The work of Eskin, Mirzakhani, and Mohammadi shows that the closure of a Teichmuller disk is always an immersed submanifold, usually called an "affine invariant submanifold" since it carries an affine structure.
The first part of the thesis studies the Variation of Hodge Structures (VHS) over an affine manifold, and more generally over a Teichmuller disk. The affine manifold carries a finite measure and this allows one to extend many of the results in the ordinary theory of VHS to this setting.
The second part of the thesis studies the Variation of Mixed Hodge Structures that arises in this setting. It shows that a certain part of it is particularly simple --- it is split. This, in turn, allows for an algebraic characterization of affine manifolds.