Heat transport in micro and nanoscale thin films /

Saved in:
Bibliographic Details
Author / Creator:Yilbas, B. S., author.
Imprint:Amsterdam, Netherlands ; Oxford, England ; Cambridge, Massachusetts : Elsevier, 2018.
©2018
Description:1 online resource (437 pages) : illustrations.
Language:English
Series:Micro & Nano Technologies Series
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11350038
Hidden Bibliographic Details
Other authors / contributors:Bin Mansoor, Saad, author.
Ali, Haider, author.
ISBN:032342998X
9780323429986
9780323429795
0323429793
Summary:Heat Transport in Micro- and Nanoscale Thin Films presents aspects and applications of the principle methods of heat transport in relation to nanoscale films. Small-scale parts and thin films are widely used in the electronics industry. However, the drastic change in the thermal conductivity with reducing device size and film thickness modifies the energy transport by heat-carrying phonons in the film. Energy transfer in small-sized devices and thin films deviate from the classical diffusion to radiative transport. This book deals with micro/nano scale heat transfer in small scale devices and the thin films, including interface properties of cross-plane transport. The book fills the gap between applications of the physical fundamentals and energy transport at the micro- and nano scale, which will be valuable for academics, researchers and students in the fields of materials science and energy transport.
Other form:Print version: 9780323429795 0323429793

MARC

LEADER 00000cam a2200000Mi 4500
001 11350038
005 20200719083242.7
006 m o d
007 cr |||||||||||
008 170922t20182018ne a ob 001 0 eng d
019 |a 1002195692  |a 1002209824  |a 1002613512 
020 |a 032342998X  |q (ebk) 
020 |a 9780323429986 
020 |z 9780323429795 
020 |z 0323429793 
035 |a (OCoLC)1006094622  |z (OCoLC)1002195692  |z (OCoLC)1002209824  |z (OCoLC)1002613512 
037 |a 1029924  |b MIL 
040 |a IDEBK  |b eng  |e rda  |c IDEBK  |d YDX  |d N$T  |d EBLCP  |d NLE  |d OPELS  |d OCLCF  |d MERER  |d GZM  |d PUL  |d D6H 
049 |a MAIN 
050 4 |a QC321 
072 7 |a TEC  |x 009070  |2 bisacsh 
100 1 |a Yilbas, B. S.,  |e author.  |0 http://id.loc.gov/authorities/names/nb2010005689 
245 1 0 |a Heat transport in micro and nanoscale thin films /  |c Bekir Sami Yilbas, Saad Bin Mansoor, Haider Ali. 
264 1 |a Amsterdam, Netherlands ;  |a Oxford, England ;  |a Cambridge, Massachusetts :  |b Elsevier,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (437 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 0 |a Micro & Nano Technologies Series 
505 0 |a Front Cover; Heat Transport in Micro- and Nanoscale Thin Films; Copyright Page; Contents; Preface; Acknowledgment; 1 Introduction; 1.1 General Considerations; 1.2 Scale of Energy Transport; 1.3 Some Aspects of Statistical Approach for Micro/Nanoscale Transport; References; 2 Crystal Dynamics and Lattice Waves; 2.1 Introduction; 2.2 Elementary Crystallography; 2.2.1 Structure of Crystal Lattices; 2.2.2 Reciprocal Lattices; 2.2.3 Crystal Planes and Directions; 2.3 Lattice Vibration; 2.3.1 Chain of Identical Atoms; 2.3.2 Phonons; 2.3.3 Chain of Two Types of Atoms; 2.4 Phonon Scattering 
505 8 |a 2.4.1 Phonon Scattering With Impurities and Defects 2.4.2 Phonon Scattering With the Crystal Boundaries; 2.4.3 Phonon-Phonon Scattering; 2.4.3.1 Normal Processes; 2.4.3.2 Umklapp Processes; 2.5 Thermal Properties; 2.5.1 The Density of States; 2.5.2 Heat Capacity; 2.5.3 Thermal Conductivity; 2.6 Closing Remarks; References; 3 Some Aspects of Statistical Thermodynamics; 3.1 Introduction; 3.2 Statistical Mechanics; 3.2.1 Microstates and Macrostates; 3.2.1.1 Macrostates; 3.2.1.2 Microstates; 3.2.2 Probability Theory; 3.2.2.1 Classical Probability; 3.2.2.2 Statistical Probability 
505 8 |a 3.2.3 Probability Distributions 3.2.3.1 Discrete Distributions; 3.2.3.2 Continuous Distributions; 3.2.4 Phase Space; 3.3 Ensembles; 3.3.1 The Microcanonical Ensemble; 3.3.1.1 Postulate 1: The Probability for All Microstates Are Equal; 3.3.1.2 Postulate 2: Boltzmann Entropy Formula; 3.3.1.3 Postulate 3: Largest Value of the Entropy Represents the Equilibrium State; 3.3.2 Canonical Ensembles; 3.3.3 Grand Canonical Ensemble; 3.4 Statistical Distributions; 3.4.1 Maxwell-Boltzmann Distribution; 3.4.2 Fermi-Dirac Distribution; 3.4.3 Bose-Einstein Distribution; 3.5 Closing Remarks; References 
505 8 |a 4 Analysis of Energy Transport Equations at Micro/Nanoscale 4.1 Introduction; 4.2 Hyperbolic Heat Equation and Applications; 4.2.1 Analysis and Solution of Hyperbolic Heat Equation; 4.2.2 Perturbation Solution for Hyperbolic Heat Equation; 4.2.3 Findings and Discussions; 4.2.3.1 Temperature and Stress Fields; 4.2.3.2 Perturbation Solution of Temperature Field; 4.3 Electron Kinetic Theory Approach for Energy Transfer in Metallic Films; 4.3.1 Formulation of Microscopic Energy Transport in Metallic Substrates; 4.3.2 Parabolic Heating Model; 4.3.3 Application of Laser Short-Pulse Heating 
505 8 |a 4.3.4 Findings of Numerical Simulations 4.4 Equation of Phonon Radiative Transfer; 4.4.1 Transport Properties of a Dielectric Material; 4.4.2 Heat Transfer Mechanism in a Thin Dielectric Film; 4.4.3 Boltzmann Transport Equation; 4.4.4 Equation of Phonon Radiative Transfer for Two-Dimensional Dielectric Thin Films; 4.4.4.1 Heat Fluxes; 4.4.4.2 Equilibrium Intensity Calculation; 4.4.4.3 Physical Significance of Each Term in EPRT; 4.4.4.4 Polarization and Modes of Phonons; 4.4.4.4.1 Longitudinal Acoustic; 4.4.4.4.2 Transverse Acoustic; 4.4.4.4.3 Longitudinal Optical; 4.4.4.4.4 Transverse Optical 
520 |a Heat Transport in Micro- and Nanoscale Thin Films presents aspects and applications of the principle methods of heat transport in relation to nanoscale films. Small-scale parts and thin films are widely used in the electronics industry. However, the drastic change in the thermal conductivity with reducing device size and film thickness modifies the energy transport by heat-carrying phonons in the film. Energy transfer in small-sized devices and thin films deviate from the classical diffusion to radiative transport. This book deals with micro/nano scale heat transfer in small scale devices and the thin films, including interface properties of cross-plane transport. The book fills the gap between applications of the physical fundamentals and energy transport at the micro- and nano scale, which will be valuable for academics, researchers and students in the fields of materials science and energy transport. 
650 0 |a Heat  |x Conduction.  |0 http://id.loc.gov/authorities/subjects/sh85059759 
650 0 |a Thin films.  |0 http://id.loc.gov/authorities/subjects/sh85134864 
650 0 |a Nanotechnology.  |0 http://id.loc.gov/authorities/subjects/sh91001490 
650 7 |a TECHNOLOGY & ENGINEERING / Mechanical.  |2 bisacsh 
650 7 |a Heat  |x Conduction.  |2 fast  |0 http://id.worldcat.org/fast/fst00953780 
650 7 |a Nanotechnology.  |2 fast  |0 http://id.worldcat.org/fast/fst01032639 
650 7 |a Thin films.  |2 fast  |0 http://id.worldcat.org/fast/fst01150018 
655 4 |a Electronic books. 
700 1 |a Bin Mansoor, Saad,  |e author.  |0 http://id.loc.gov/authorities/names/no2018006892 
700 1 |a Ali, Haider,  |e author.  |0 http://id.loc.gov/authorities/names/n90681442 
776 0 8 |i Print version:  |z 9780323429795  |z 0323429793  |w (OCoLC)974698572 
903 |a HeVa 
929 |a oclccm 
999 f f |i 727ca55b-5d58-52fc-9cb5-1d5a1bfb6b19  |s df87ccda-0749-54c1-b8ac-99d5b5fcc91f 
928 |t Library of Congress classification  |a QC321  |l Online  |c UC-FullText  |u https://www.sciencedirect.com/science/book/9780323429795  |z Elsevier  |g ebooks  |i 10980768