Simulation and modeling of turbulent flows /

Saved in:
Bibliographic Details
Imprint:New York : Oxford University Press, 1996.
Description:1 online resource (x, 314 pages) : illustrations
Language:English
Series:ICASE/LaRC series in computational science and engineering
ICASE/LaRC series in computational science and engineering.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11281098
Hidden Bibliographic Details
Other authors / contributors:Gatski, T. B.
Hussaini, M. Yousuff.
Lumley, John L. (John Leask), 1930-
ISBN:9780195106435
0195106431
1423741056
9781423741053
0195106431
9781602561304
1602561303
9781615831692
161583169X
0195355563
9780195355567
Notes:Includes bibliographical references and index.
Summary:This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in thei.
Other form:Print version: Simulation and modeling of turbulent flows. New York : Oxford University Press, 1996
Table of Contents:
  • Part I. Fundamental Aspects of Incompressible and Compressible Turbulent Flows
  • 1. Introduction
  • 1.1. The Energy Cascade in the Spectrum in Equilibrium Flows
  • 1.2. Kolmogorov Scales
  • 1.3. Equilibrium Estimates for Dissipation
  • 1.4. The Dynamics of Turbulence
  • 2. Equilibrium and Non-Equilibrium Flows
  • 2.1. The Spectral Cascade in Non-Equilibrium Flows
  • 2.2. Delay in Crossing the Spectrum
  • 2.3. Negative Production
  • 2.4. Mixing of Fluid with Different Histories
  • 2.5. Deformation Work in Equilibrium and Non-Equilibrium Situations
  • 2.6. Alignment of Vectors
  • 2.7. Dilatational Dissipation and Irrotational Dissipation
  • 2.8. Eddy Shocklets
  • 3. Proper Orthogonal Decomposition and Wavelet Representations
  • 3.1. Coherent Structures
  • 3.2. The Role of Coherent Structures in turbulence Dynamics
  • 3.3. The POD as a Representation of Coherent Structures
  • 3.4. Low-Dimensional Models Constructed Using the POD
  • 3.5. Comparison with the Wall Region
  • 3.6. Generation of Eigenfunction from Stability Arguments
  • 3.7. Wavelet Representation
  • 3.8. Dynamics with the Wavelet Representation in a Simple Equation
  • 4. References
  • Part II. Direct Numerical Simulation of Turbulent Flows
  • 1.
  • 2. Problem of Numerical Simulation
  • 3. Simulation of Homogenous Incompressible Turbulence
  • 4. Wall-Bounded and Inhomogenous Flows
  • 5. Fast, Viscous Vortex Methods
  • 6. Simulation of Compressible Turbulence
  • 7. References
  • Part III. Large Eddy Simulation
  • 1. Introduction
  • 2. Turbulence and its Prediction
  • 2.1. The Nature of Turbulence
  • 2.2. RANS Model
  • 2.3. Direct Numerical Simulation (DNS)
  • 3. Filtering
  • 4. Subgrid Scale Model
  • 4.1. Physics of the Subgrid Scale Term
  • 4.2. Smagorinsky Model
  • 4.3. A Priori Testing
  • 4.4. Scale Similarity Model
  • 4.5. Dynamic Procedure
  • 4.6. Spectral Models
  • 4.7. Effects of Other Strains
  • 4.8. Other Models
  • 5. Wall Models
  • 6. Numerical Methods
  • 7. Accomplishments and Prospects
  • 8. Coherent Structure Capturing
  • 8.1. The Concept
  • 8.2. Modeling Issues
  • 9. Conclusions and Recommendations
  • 10. References
  • Part IV. Introduction to Renormalization Group Modeling of Turbulence
  • 1. Introduction
  • 2. Perturbation Theory for the Navier-Stokes Equations
  • 3. Renormalization Group Method for Resummation of Divergent Series
  • 4. Transport Modeling
  • 5. References
  • Part V. Modeling of Turbulent Transport Equations
  • 1. Introduction
  • 2. Incompressible Turbulent Flows
  • 2.1. Reynolds Averages
  • 2.2. Reynolds-Averaged Equations
  • 2.3. The Closure Problem
  • 2.4. Older Zero- and One-Equation Models
  • 2.5. Transport Equations of Turbulence
  • 2.6. Two-Equation Models
  • 2.7. Full Second-Order Closures
  • 3. Compressible Turbulence
  • 3.1. Compressible Reynolds Averages
  • 3.2. Compressible Reynolds-Averaged Equations
  • 3.3. Compressible Reynolds Stress Transport Equation
  • 3.4. Compressible Two-Equation Models
  • 3.5. Illustrative Examples
  • 4. Concluding Remarks
  • 5. References
  • Part VI. An Introduction to Single-Point Closure Methodology
  • 1. Introduction
  • 1.1. The Reynolds Equations