Hybrid Polymer Composite Materials : Processing /

Saved in:
Bibliographic Details
Imprint:Duxford : Woodhead Publishing, [2017]
Description:1 online resource : color illustrations
Series:Woodhead Publishing Series in Composites Science and Engineering
Woodhead Publishing series in composites science and engineering.
Polymeric composites.
TECHNOLOGY & ENGINEERING / Engineering (General)
Polymeric composites.
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11274393
Hidden Bibliographic Details
Other authors / contributors:Thakur, Vijay Kumar, 1981- editor.
Thakur, Manju Kumari, editor.
Gupta, Raju Kumar, 1982- editor.
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed June 12, 2017).
Summary:This book presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents.
Other form:Original 008100785X 9780081007853 0081007892 9780081007891 0081007876 9780081007877
Table of Contents:
  • Front Cover; Hybrid Polymer Composite Materials; Copyright Page; Contents; List of Contributors; 1 Processing of hybrid polymer composites-a review; 1.1 Introduction; 1.2 Fibers; 1.2.1 Natural fibers; Fiber treatment; 1.2.2 Synthetic fiber; 1.3 Polymer; 1.3.1 Thermoset; 1.3.2 Thermoplastic; 1.4 Polymer composites; 1.5 Hybrid composites; 1.6 Parameters of processing methods; 1.6.1 Pultrusion; 1.6.2 Filament winding; 1.6.3 Hand lay-up; 1.6.4 Resin transfer molding; 1.6.5 Vacuum bagging; 1.6.6 Compression molding; 1.6.7 Injection molding
  • 1.7 Advantage and disadvantage of processing methods1.7.1 Resin transfer molding (RTM); 1.7.2 Compression molding; 1.7.3 Injection molding; 1.7.4 Hand lay-up; 1.7.5 Common disadvantage of natural fiber composites; 1.8 Applications; 1.8.1 Application of hybrid polymer composites; 1.8.2 Application of each processing method; Hand lay-up; Compression molding; Injection molding; Solvent casting; 1.9 Conclusion; References; 2 Bio-based hybrid polymer composites: a sustainable high performance material; 2.1 Introduction; 2.2 Nature and behavior of natural fibers
  • 2.2.1 Properties of NFs2.2.2 Processing of NFs; 2.2.3 Types and applications of NFs; Flax fibers (FFs); Kenaf fibers (KFs); Jute fibers (JFs); Coir fibers (CFs); Sisal fibers; Ramie fibers (RFs); Palm fibers (PFs); 2.3 Biodegradable/bio-based polymers as matrices; 2.3.1 Polylactic acid (PLA); 2.3.2 Polyhydroxyalkanoates (PHAs); 2.3.3 Aliphatic polyesters; 2.3.4 Aliphatic aromatic copolyesters; 2.3.5 Polyester amides; 2.3.6 Polybutylene succinates; 2.3.7 Polyvinyl alcohol; References; 3 Water soluble polymer based hybrid nanocomposites
  • 3.1 Hybrid polymer nanocomposites3.2 Gelatin-based hybrid polymer nanocomposites; 3.3 Nanomaterials suitable for fabricating gelatin-based hybrid polymer nanocomposites; 3.4 Hybrid gelatin nanocomposites containing a combination of BCNC and AgNPs; 3.4.1 Morphology; 3.4.2 Mechanical properties; 3.4.3 Moisture sorption properties; 3.4.4 Thermal properties; 3.5 Gelatin nanocomposites containing a combination of amine functionalized clay and AgNPs; 3.5.1 Mechanical properties; 3.5.2 Thermal properties; 3.5.3 Barrier properties; 3.6 Conclusions; References
  • 4 Dynamic fabrication of amylosic supramolecular composites in an enzymatic polymerization field4.1 Introduction; 4.2 Dynamic formation of amylosic supramolecular inclusion composites by vine-twining polymerization and related system; 4.3 Selective complexation of amylose in vine-twining polymerization; 4.4 Dynamic fabrication of amylosic supramolecular inclusion composite materials by vine-twining polymerization; 4.5 Conclusions; References; 5 Advanced composites with strengthened nanostructured interface; 5.1 Introduction: necessity to strengthen the fiber-matrix interface