Smart polymer nanocomposites : energy harvesting, self-healing and shape memory applications /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, 2017.
Description:1 online resource (xi, 397 pages) : illustrations (some color)
Language:English
Series:Springer series on polymer and composite materials
Springer series on polymer and composite materials.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11272219
Hidden Bibliographic Details
Other authors / contributors:Ponnamma, Deepalekshmi, editor.
Sadasivuni, Kishor Kumar, 1986- editor.
Cabibihan, J.-J. (John-John), editor.
Al-Maadeed, Mariam Al-Ali, editor.
ISBN:9783319504247
331950424X
9783319504230
3319504231
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed March 15, 2017).
Summary:This book covers smart polymer nanocomposites with perspectives for application in energy harvesting, as self-healing materials, or shape memory materials. The book is application-oriented and describes different types of polymer nanocomposites, such as elastomeric composites, thermoplastic composites, or conductive polymer composites. It outlines their potential for applications, which would meet some of the most important challenges nowadays: for harvesting energy, as materials with the capacity to self-heal, or as materials memorizing a given shape. The book brings together these different applications for the first time in one single platform. Chapters are ordered both by the type of composites and by the target applications. Readers will thus find a good overview, facilitating a comparison of the different smart materials and their applications. The book will appeal to scientists in the fields of chemistry, material science and engineering, but also to technologists and physicists, from graduate student level to researcher and professional.
Other form:Print version: Smart polymer nanocomposites. Cham, Switzerland : Springer, 2017 3319504231 9783319504230
Standard no.:10.1007/978-3-319-50424-7
10.1007/978-3-319-50

MARC

LEADER 00000cam a2200000Ii 4500
001 11272219
005 20210625185125.5
006 m o d
007 cr cnu|||unuuu
008 170308s2017 sz a ob 000 0 eng d
016 7 |a 019091163  |2 Uk 
019 |a 975029391  |a 975086868  |a 975385124  |a 984876804  |a 988828863  |a 999482448  |a 1005781519  |a 1011902841  |a 1048168525  |a 1066447770  |a 1066687903  |a 1105169916 
020 |a 9783319504247  |q (electronic bk.) 
020 |a 331950424X  |q (electronic bk.) 
020 |z 9783319504230  |q (print) 
020 |z 3319504231 
024 7 |a 10.1007/978-3-319-50424-7  |2 doi 
024 8 |a 10.1007/978-3-319-50 
035 |a (OCoLC)974802313  |z (OCoLC)975029391  |z (OCoLC)975086868  |z (OCoLC)975385124  |z (OCoLC)984876804  |z (OCoLC)988828863  |z (OCoLC)999482448  |z (OCoLC)1005781519  |z (OCoLC)1011902841  |z (OCoLC)1048168525  |z (OCoLC)1066447770  |z (OCoLC)1066687903  |z (OCoLC)1105169916 
035 9 |a (OCLCCM-CC)974802313 
037 |a com.springer.onix.9783319504247  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d GW5XE  |d IDEBK  |d N$T  |d YDX  |d UAB  |d NJR  |d ILU  |d OCLCF  |d IOG  |d COO  |d AZU  |d UPM  |d MERER  |d ESU  |d VT2  |d OCLCQ  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d OCLCQ  |d U3W  |d JG0  |d SNK  |d CAUOI  |d KSU  |d UKMGB  |d WYU  |d OCLCQ  |d UKAHL  |d LQU  |d OCLCQ  |d ERF  |d OCLCQ  |d SRU 
049 |a MAIN 
050 4 |a TA455.P585 
066 |c (S 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 021007  |2 bisacsh 
072 7 |a PNNP  |2 bicssc 
245 0 0 |a Smart polymer nanocomposites :  |b energy harvesting, self-healing and shape memory applications /  |c Deepalekshmi Ponnamma, Kishor Kumar Sadasivuni, John-John Cabibihan, Mariam Al-Ali Al Maadeed, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2017. 
300 |a 1 online resource (xi, 397 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer series on polymer and composite materials 
504 |a Includes bibliographical references. 
505 0 |a Contributors; 1 Energy Harvesting: Breakthrough Technologies Through Polymer Composites; Abstract; 1 Introduction; 1.1 Energy Harvesting for Alternatives to Fossil Fuel; 1.2 Energy Harvesting for Powering Sensors and Electronics; 2 Photovoltaic Technologies; 2.1 Role of Nanostructured Materials and Conducting Polymers in Various PV Technologies; 2.1.1 Organic Polymer Solar Cells; Device Physics and Active Layers Involved in Energy Conversion; Device Physics and Active Layers Involved in Energy Conversion. 
505 8 |a BJH OPV Cells: Focus on (Poly(3-hexylthiophene) (P3HT)) and MDMO-PPV (Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene]-alt-(vinylene)) Polymer Composites in OPVs2.2 The Bigger Picture: Maximizing Cell and Module Efficiency Through Inorganic-Organic Hybrid Structures; 2.2.1 Charge Separation at the Organic-Inorganic Interface; 2.2.2 Nanostructured Architecture of Hybrid Cells; 2.2.3 Key Components and Optimization for Enhanced Device Performance; 3 Thermoelectric Power Generation; 3.1 The Physics of a Working Thermoelectric Energy Harvester. 
505 8 |a 3.2 Historical Implementation of Inorganic Materials: Evolution, Challenges Faced, and Limitations3.3 Applications of Various Conductive Polymers for Organic Active Layers; 3.3.1 Ease of Manufacturability; 3.3.2 Tunability: Effect of Doping Level on the Thermoelectric Properties of Conductive Polymers; Copolymers and Polymer Blends: Further Methods to Tune Properties; Ability to Utilize Additives and Their Respective Advantages; 4 Mechanical Vibration-Based Energy Harvesting; 4.1 Electromagnetic Energy Harvesters; 4.1.1 Operating Principle and Challenges in Miniaturization of Device. 
505 8 |a 4.1.2 Fabrication Using Polymer NanocompositesFabrication Methodologies; Geometry of Harvesters; Working Principles Behind Energy Capture; 4.1.3 Challenges and Work Underway; 4.2 Piezoelectric Energy Harvesters; 4.2.1 Operating Principal Utilizing Two Categories of Piezogenerators; Single-Phase Piezoceramics; Piezocomposites; Piezopolymers; Voided Charge Polymers; 4.2.2 Comparison and Advantage of Piezoelectric Polymers Over Inorganic Piezoelectric Materials; 4.2.3 Conclusions, Challenges, and Future Outlook; References; 2 Energy Harvesting from Crystalline and Conductive Polymer Composites. 
505 8 |a Abstract1 Introduction; 2 Electroactive Polymers (EAPs); 3 Energy Harvesting from Ferroelectric Polymers; 3.1 Electromechanical Properties of PVDF; 3.2 Energy Harvesting Using PVDF; 3.2.1 Kinetic Energy Harvesters Using PVDF; 3.2.2 Kinematic Energy Harvesters Using PVDF; 3.2.3 Micro- and Nanogenerators Based on PVDF Composites; 3.3 Energy Harvesting Using Cellulose Nanocrystals; 4 Energy Harvesting from Electrostrictive Polymers; 4.1 Effect of Intrinsic Mechanisms; 4.2 Tackling Quadratic Dependence of Strain on Electric Field; 4.3 Energy Harvesting Using Polyurethane Transducers. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 15, 2017). 
520 |a This book covers smart polymer nanocomposites with perspectives for application in energy harvesting, as self-healing materials, or shape memory materials. The book is application-oriented and describes different types of polymer nanocomposites, such as elastomeric composites, thermoplastic composites, or conductive polymer composites. It outlines their potential for applications, which would meet some of the most important challenges nowadays: for harvesting energy, as materials with the capacity to self-heal, or as materials memorizing a given shape. The book brings together these different applications for the first time in one single platform. Chapters are ordered both by the type of composites and by the target applications. Readers will thus find a good overview, facilitating a comparison of the different smart materials and their applications. The book will appeal to scientists in the fields of chemistry, material science and engineering, but also to technologists and physicists, from graduate student level to researcher and professional. 
650 0 |a Shape memory polymers.  |0 http://id.loc.gov/authorities/subjects/sh2011004427 
650 0 |a Nanocomposites (Materials)  |0 http://id.loc.gov/authorities/subjects/sh2008002284 
650 1 4 |a Chemistry. 
650 2 4 |a Polymer Sciences. 
650 2 4 |a Nanotechnology. 
650 2 4 |a Energy Harvesting. 
650 2 4 |a Nanotechnology and Microengineering. 
650 2 4 |a Nanochemistry. 
650 2 4 |a Nanoscale Science and Technology. 
650 7 |a Nanotechnology.  |2 bicssc 
650 7 |a Power generation & distribution.  |2 bicssc 
650 7 |a Precision instruments manufacture.  |2 bicssc 
650 7 |a Polymer chemistry.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Materials Science  |x General.  |2 bisacsh 
650 7 |a Nanocomposites (Materials)  |2 fast  |0 (OCoLC)fst01748679 
650 7 |a Shape memory polymers.  |2 fast  |0 (OCoLC)fst01895370 
655 0 |a Electronic book. 
655 4 |a Electronic books. 
700 1 |a Ponnamma, Deepalekshmi,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2015001065 
700 1 |a Sadasivuni, Kishor Kumar,  |d 1986-  |e editor.  |0 http://id.loc.gov/authorities/names/no2014060025 
700 1 |a Cabibihan, J.-J.  |q (John-John),  |e editor.  |0 http://id.loc.gov/authorities/names/no2017005671 
700 1 |a Al-Maadeed, Mariam Al-Ali,  |e editor. 
776 0 8 |i Print version:  |t Smart polymer nanocomposites.  |d Cham, Switzerland : Springer, 2017  |z 3319504231  |z 9783319504230  |w (OCoLC)962127385 
830 0 |a Springer series on polymer and composite materials.  |0 http://id.loc.gov/authorities/names/n2015191265 
880 0 |6 505-00/(S  |a Polymer Composites: Perspectives for Energy Harvesting, Self-healing and Shape Memory -- Energy harvesting with crystalline polymer composites: cellulose, and PVDF composites -- Energy harvesting using conductive polymer composites -- Application of poly (3-hexylthiophene) P3HT composites for energy harvesting -- Energy harvesting with poly(fluorene-co-thiophene) and perflouro polymer composites -- Elastomer composites in energy harvesting: poly (dimethylsiloxane), polyurethane composites -- Poly-γ-benzyl-L-glutamate, poly(methyl methacrylate) composites and their application for energy harvesting -- Self-healing materials from elastomeric composites -- Self-healing materials from crystalline polymer composites -- Thermoplastic polymer composites as self-healing materials -- Application of conductive polymer composites as self-healing materials -- Self-healing of biopolymers and their composites -- Shape memory materials from elastomeric composites -- Conductive polymer composites: Perspectives as shape memory materials -- Thermoplastic polymer composites as shape memory materials -- Crystalline polymer composites as shape memory materials. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 2a6913ad-2bbd-558e-bd1e-97d891d8d3f6  |s 443b2785-99a4-5f12-917f-559c6cdcfcf0 
928 |t Library of Congress classification  |a TA455.P585  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-50424-7  |z Springer Nature  |g ebooks  |i 12544582