E-learning systems : intelligent techniques for personalization /

Saved in:
Bibliographic Details
Imprint:Switzerland : Springer, [2016]
©2017
Description:1 online resource (xxiii, 294 pages) : illustrations (some color)
Language:English
Series:Intelligent systems reference library, 1868-4394 ; volume 112
Intelligent systems reference library ; v. 112.
Subject:Web-based instruction.
Educational equipment & technology, computer-aided learning (Calif.)
Information retrieval.
Artificial intelligence.
EDUCATION -- Administration -- General.
EDUCATION -- Organizations & Institutions.
Web-based instruction.
Electronic books.
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11264788
Hidden Bibliographic Details
Other authors / contributors:Klašnja-Milićević, Aleksandra, author.
Vesin, Boban, author.
Ivanović, Mirjana, author.
Budimac, Zoran, author.
Jain, L. C., author.
ISBN:9783319411637
3319411632
9783319411613
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed July 29, 2016).
Summary:This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific knowledge. A new approach to perform effective personalization based on Semantic web technologies achieved in a tutoring system is presented. This approach incorporates a recommender system based on collaborative tagging techniques that adapts to the interests and level of students' knowledge. These innovations are important contributions of this monograph. Theoretical models and techniques are illustrated on a real personalised tutoring system for teaching Java programming language. The monograph is directed to, students and researchers interested in the e-learning and personalization techniques. .
Other form:Print version: Klasnja-Milićević, Aleksandra E-Learning Systems : Intelligent Techniques for Personalization Cham : Springer,c2016 9783319411613
LEADER 06343cam a2200661Ii 4500
001 11264788
005 20210625184606.9
006 m o d
007 cr cnu|||unuuu
008 160725t20162017sz a ob 000 0 eng d
015 |a GBB8M2242  |2 bnb 
016 7 |a 019135647  |2 Uk 
019 |a 962354248  |a 1163431310  |a 1193114397 
020 |a 9783319411637  |q (electronic bk.) 
020 |a 3319411632  |q (electronic bk.) 
020 |z 9783319411613  |q (print) 
035 |a (OCoLC)953969157  |z (OCoLC)962354248  |z (OCoLC)1163431310  |z (OCoLC)1193114397 
037 |a com.springer.onix.9783319411637  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d GW5XE  |d IDEBK  |d EBLCP  |d OCLCF  |d N$T  |d UAB  |d IOG  |d MERER  |d ESU  |d OCLCQ  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d YDX  |d Z5A  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d UKMGB  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a LB1044.87 
072 7 |a EDU  |x 001000  |2 bisacsh 
072 7 |a EDU  |x 036000  |2 bisacsh 
245 0 0 |a E-learning systems :  |b intelligent techniques for personalization /  |c Aleksandra Klašnja-Milićević, Boban Vesin, Mirjana Ivanović, Zoran Budimac, Lakhmi C. Jain. 
264 1 |a Switzerland :  |b Springer,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xxiii, 294 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Intelligent systems reference library,  |x 1868-4394 ;  |v volume 112 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed July 29, 2016). 
505 0 |a Foreword; Preface; Contents; About the Authors; Abbreviations; Abstract; Preliminaries; 1 Introduction to E-Learning Systems; Abstract; 1.1 Web-Based Learning; 1.2 E-Learning; 1.3 E-Learning Objects, Standards and Specifications; 1.3.1 E-Learning Objects; 1.3.2 E-Learning Specifications and Standards; 1.3.2.1 S1. IEEE LOM and IMS Learning Resource Metadata; 1.3.2.2 S2. Dublin Core Metadata Initiative; 1.3.2.3 S3. IMS Learner Information Package; 1.3.2.4 S4. IMS Content Packaging; 1.3.2.5 S5. IMS Simple Sequencing; 1.3.2.6 S6. ADL SCORM; 1.3.3 Analysis of Standards and Specifications. 
505 8 |a 3.3.4 Information Understanding: Sequential and Global LearnersReferences; 4 Adaptation in E-Learning Environments; Abstract; 4.1 Adaptive Educational Hypermedia; 4.2 Content Adaptation; 4.3 Link Adaptation; References; 5 Agents in E-Learning Environments; Abstract; 5.1 Some Existing Agent Based Systems; 5.2 HAPA System Overview; 5.2.1 Harvesting and Classifying the Learning Material; 5.2.1.1 Pedagogical agents; References; 6 Recommender Systems in E-Learning Environments; Abstract; 6.1 Recommendations and Recommender Systems. 
505 8 |a 6.2 The Most Important Requirements and Challenges for Designing a Recommender System in E-Learning Environments6.3 Recommendation Techniques for RS in E-Learning Environments-A Survey of the State-of-the-Art; 6.3.1 Collaborative Filtering Approach; 6.3.2 Content-Based Techniques; 6.3.3 Association Rule Mining; References; 7 Folksonomy and Tag-Based Recommender Systems in E-Learning Environments; Abstract; 7.1 Comprehensive Survey of the State-of-the-Art in Collaborative Tagging Systems and Folksonomy; 7.1.1 Tagging Rights; 7.1.2 Tagging Support; 7.1.3 Aggregation; 7.1.4 Types of Object. 
505 8 |a 7.1.5 Sources of Material7.1.6 Resource Connectivity; 7.1.7 Social Connectivity; 7.2 A Model for Tagging Activities; 7.3 Tag-Based Recommender Systems; 7.3.1 Extension with Tags; 7.3.2 Collecting Tags; 7.4 Applying Tag-Based Recommender Systems to E-Learning Environments; 7.4.1 FolkRank Algorithm; 7.4.2 PLSA; 7.4.3 Collaborative Filtering Based on Collaborative Tagging; 7.4.4 Tensor Factorization Technique for Tag Recommendation; 7.4.4.1 SVD Algorithm; 7.4.4.2 Tensors and HOSVD Algorithm; 7.4.4.3 Ranking with Tensor Factorization; 7.4.4.4 Multi-mode Recommendations; 7.4.5 Most Popular Tags. 
520 |a This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific knowledge. A new approach to perform effective personalization based on Semantic web technologies achieved in a tutoring system is presented. This approach incorporates a recommender system based on collaborative tagging techniques that adapts to the interests and level of students' knowledge. These innovations are important contributions of this monograph. Theoretical models and techniques are illustrated on a real personalised tutoring system for teaching Java programming language. The monograph is directed to, students and researchers interested in the e-learning and personalization techniques. . 
650 0 |a Web-based instruction.  |0 http://id.loc.gov/authorities/subjects/sh2003006114 
650 7 |a Educational equipment & technology, computer-aided learning (Calif.)  |2 bicssc 
650 7 |a Information retrieval.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a EDUCATION  |x Administration  |x General.  |2 bisacsh 
650 7 |a EDUCATION  |x Organizations & Institutions.  |2 bisacsh 
650 7 |a Web-based instruction.  |2 fast  |0 (OCoLC)fst01173272 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Klašnja-Milićević, Aleksandra,  |e author. 
700 1 |a Vesin, Boban,  |e author. 
700 1 |a Ivanović, Mirjana,  |e author.  |0 http://id.loc.gov/authorities/names/nb2010027180 
700 1 |a Budimac, Zoran,  |e author. 
700 1 |a Jain, L. C.,  |e author.  |0 http://id.loc.gov/authorities/names/n95096324 
776 0 8 |i Print version:  |a Klasnja-Milićević, Aleksandra  |t E-Learning Systems : Intelligent Techniques for Personalization  |d Cham : Springer,c2016  |z 9783319411613 
830 0 |a Intelligent systems reference library ;  |v v. 112.  |0 http://id.loc.gov/authorities/names/no2009180237 
903 |a HeVa 
929 |a oclccm 
999 f f |i d1648bc4-ee93-5254-9994-d3c03536f227  |s ee50ed87-bd08-5f45-be35-37c07f25ee72 
928 |t Library of Congress classification  |a LB1044.87  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-41163-7  |z Springer Nature  |g ebooks  |i 12538696