Plant breeding : past, present and future /

Saved in:
Bibliographic Details
Author / Creator:Bradshaw, John E., author.
Imprint:Switzerland : Springer, 2016.
Description:1 online resource (xxviii, 693 pages) : illustrations (some color)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11253621
Hidden Bibliographic Details
ISBN:9783319232850
3319232851
3319232843
9783319232843
9783319232843
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed March 15, 2016).
Summary:The United Nations predicts that the global human population will rise from the 7 billion reached in 2011 to 9 billion by 2050, and that world food production will need to increase between 70 and 100 per cent in just 40 years. Most of this increase will need to come from bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, given the most appropriate farming methods and storage of food and the availability of suitably adapted cultivars, including adaptation to climate change. Breeding such cultivars is the challenge for a new generation of plant breeders who will need to decide what germplasm and which breeding methods to use, and the types of cultivar to produce. They will also need to consider new opportunities made possible by technological advances in the manipulation of DNA, the chemical basis of heredity. This book aims to help them in their endeavours by reviewing past achievements, currently successful practices and emerging methods and techniques. Theoretical considerations are presented when thought helpful. The book is divided into four parts: Part I is an historical introduction finishing with future goals; Part II deals with the origin, recognition and selection of genetic variants that affect qualitative and quantitative traits in a desired way, and concludes with genome evolution and polyploidy; Part III explains how the mating systems of crop species determine the genetic structures of their landraces and hence the types of high yielding cultivars that have been bred from them: synthetic (including open-pollinated), clonal, hybrid and inbred line (including mixtures); Part IV considers three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops. It concludes with strategies for achieving durable resistance to pests and diseases.
Other form:Printed edition: 9783319232843
Standard no.:10.1007/978-3-319-23285-0
Description
Summary:

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary.

The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.

Physical Description:1 online resource (xxviii, 693 pages) : illustrations (some color)
Bibliography:Includes bibliographical references and index.
ISBN:9783319232850
3319232851
3319232843
9783319232843