Optogenetics.

Saved in:
Bibliographic Details
Author / Creator:Hegemann, Peter.
Imprint:Berlin : De Gruyter, 2013.
Description:1 online resource (240 pages)
Language:English
Series:Dahlem Workshop Reports
Dahlem workshop reports.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11204879
Hidden Bibliographic Details
Other authors / contributors:Sigrist, Stephan.
ISBN:9783110270723
3110270722
Notes:6.5.1 Closed-loop optogenetic control and optical feedback from behavior and individual neurons.
Print version record.
Summary:Optogenetics combines genetic engineering with optics to observe and control the function of cells using light, with clinical implications for restoration of vision and treatment of neurological diseases. As a new discipline much of the basic science and methods are currently under investigation and active development, thus there is a strong need for introductory literature in this field. This graduate level textbook provides an overview of the field of optogenetics in 5 concise chapters: Optogenetic tools, Applications in cellular systems, Mapping neuronal networks, Clinical applications and.
Other form:Print version: Hegemann, Peter. Optogenetics. Berlin : De Gruyter, ©2013 9783110270716
Table of Contents:
  • List of contributing authors; Introduction; 1 The biophysics and engineering of signaling photoreceptors; 1.1 Photoreceptors; 1.1.1 Novel photoreceptors; 1.1.2 Biophysics of photoreceptors and signal transduction; 1.2 Engineering of photoreceptors; 1.2.1 Approaches to designing light-regulated biological processes; 1.3 Case study
  • transcriptional control in cells by light; 1.4 Conclusion; Acknowledgements; References; 2 Current challenges in optogenetics; 2.1 Introduction; 2.2 Background: current functionality of tools.
  • 2.3 Unsolved problems and open questions: technology from cell biology, optics, and behavior2.4 Unsolved problems and open questions: genomics and biophysics; 2.5 Conclusion; References; 3 Challenges and opportunities for optochemical genetics; 3.1 Introduction; 3.2 Photosensitizing receptors; 3.3 PCL and PTL development and applications; 3.4 Advantages and disadvantages of PCLs and PTLs; 3.5 Conclusion; References; 4 Optogenetic imaging of neural circuit dynamics using voltage-sensitive fluorescent proteins: potential, challenges and perspectives; 4.1 Introduction; 4.2 The biological problem.
  • 4.3 The large scale challenge of circuit neurosciences4.4 The current approach to the large-scale integration problem; 4.5 Large-scale recordings of neuronal activities using optogenetic approaches; 4.6 Genetically encoded voltage indicators: state of development and application; 4.7 Unsolved methodological / technical challenges; References; 5 Why optogenetic "control" is not (yet) control; Acknowledgments; References; 6 Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans.
  • 6.1 Introduction
  • the nematode as a genetic model in systems neurosciencesystems neuroscience6.2 Imaging of neural activity in the nematode; 6.2.1 Genetically encoded Ca2+ indicators (GECIs); 6.2.2 Imaging populations of neurons in immobilized animals; 6.2.3 Imaging neural activity in freely moving animals; 6.2.4 Other genetically encoded indicators of neuronal function; 6.3 Optogenetic tools established in the nematode; 6.3.1 Channelrhodopsin (ChR2) and ChR variants with different functional properties for photodepolarization.
  • 6.3.2 Halorhodopsin and light-triggered proton pumps for photohyperpolarization6.3.3 Photoactivated Adenylyl Cyclase (PAC) for phototriggered cAMPdependent effects that facilitate neuronal transmission; 6.3.4 Other optogenetic approaches; 6.3.5 Stimulation of single neurons by optogenetics in freely behaving C. elegans; 6.4 Examples for optogenetic applications in C. elegans; 6.4.1 Optical control of synaptic transmission at the neuromuscular junction and between neurons; 6.4.2 Optical control of neural network activity in the generation of behavior; 6.5 Future challenges.