Nonconservative Stability Problems of Modern Physics.

Saved in:
Bibliographic Details
Author / Creator:Kirillov, Oleg N.
Imprint:Berlin : De Gruyter, 2013.
Description:1 online resource (448 pages)
Language:English
Series:De Gruyter Studies in Mathematical Physics
De Gruyter studies in mathematical physics.
Subject:Stability -- Mathematical models.
Eigenvalues.
Oscillations.
Mechanical impedance.
Eigenvalues.
Mechanical impedance.
Oscillations.
SCIENCE -- Energy.
SCIENCE -- Mechanics -- General.
Stability -- Mathematical models.
Physik.
SCIENCE -- Energy.
SCIENCE -- Mechanics -- General.
SCIENCE -- Physics -- General.
Eigenvalues.
Mechanical impedance.
Oscillations.
Stability -- Mathematical models.
Stabilität
Physikalisches System
Nichtkonservative Kraft
Electronic books.
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11204593
Hidden Bibliographic Details
ISBN:9783110270433
3110270439
9783110270341
311027034X
Notes:3.3.7 Inertia theorems and stability of gyroscopic systems.
Includes bibliographies (pages 387-422) and indexes.
Print version record.
Summary:This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics.
Other form:Print version: Kirillov, Oleg N. Nonconservative Stability Problems of Modern Physics. Berlin : De Gruyter, ©2013 9783110270341
LEADER 08416cam a2200877Mu 4500
001 11204593
005 20210528162722.5
006 m o d
007 cr cnu---unuuu
008 130921s2013 gw ob 001 0 eng d
003 ICU
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d CN3GA  |d OCLCO  |d N$T  |d E7B  |d OCLCF  |d OCLCQ  |d OCLCO  |d COO  |d DEBBG  |d YDXCP  |d CUS  |d DEBSZ  |d OCLCQ  |d D6H  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d DEGRU  |d I9W  |d I8H  |d U3W  |d STF  |d VNS  |d OCLCQ  |d VTS  |d CRU  |d ICG  |d INT  |d VT2  |d AU@  |d CUY  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d U9X  |d AJS  |d OCLCQ 
066 |c (S 
019 |a 877443339  |a 961659973  |a 962642040  |a 1055383639  |a 1065718371  |a 1081230778 
020 |a 9783110270433  |q (electronic bk.) 
020 |a 3110270439  |q (electronic bk.) 
020 |a 9783110270341 
020 |a 311027034X 
035 |a (OCoLC)858761731  |z (OCoLC)877443339  |z (OCoLC)961659973  |z (OCoLC)962642040  |z (OCoLC)1055383639  |z (OCoLC)1065718371  |z (OCoLC)1081230778 
050 4 |a QA871 .K57 2013 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
084 |a SK 950  |2 rvk 
049 |a MAIN 
100 1 |a Kirillov, Oleg N. 
245 1 0 |a Nonconservative Stability Problems of Modern Physics. 
260 |a Berlin :  |b De Gruyter,  |c 2013. 
300 |a 1 online resource (448 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematical Physics 
588 0 |a Print version record. 
505 0 |a Preface; 1 Introduction; 1.1 Gyroscopic stabilization on a rotating surface; 1.1.1 Brouwer's mechanical model; 1.1.2 Eigenvalue problems and the characteristic equation; 1.1.3 Eigencurves and bifurcation of multiple eigenvalues; 1.1.4 Singular stability boundary of the rotating saddle trap; 1.2 Manifestations of Brouwer's model in physics; 1.2.1 Stability of deformable rotors; 1.2.2 Foucault's pendulum, Bryan's effect, Coriolis vibratory gyroscopes, and the Hannay-Berry phase; 1.2.3 Polarized light within a cholesteric liquid crystal; 1.2.4 Helical magnetic quadrupole focussing systems. 
505 8 |a 1.2.5 Modulational instability1.3 Brouwer's problem with damping and circulatory forces; 1.3.1 Circulatory forces; 1.3.2 Dissipation-induced instability of negative energy modes; 1.3.3 Circulatory systems and the destabilization paradox; 1.3.4 Merkin's theorem, Nicolai's paradox, and subcritical flutter; 1.3.5 Indefinite damping and parity-time (PT) symmetry; 1.4 Scope of the book; 2 Lyapunov stability and linear stability analysis; 2.1 Main facts and definitions; 2.1.1 Stability, instability, and uniform stability; 2.1.2 Attractivity and asymptotic stability. 
505 8 |a 2.1.3 Autonomous, nonautonomous, and periodic systems2.2 The direct (second) method of Lyapunov; 2.2.1 Lyapunov functions; 2.2.2 Lyapunov and Persidskii theorems on stability; 2.2.3 Chetaev and Lyapunov theorems on instability; 2.3 The indirect (first) method of Lyapunov; 2.3.1 Linearization; 2.3.2 The characteristic exponent of a solution; 2.3.3 Lyapunov regularity of linearization; 2.3.4 Stability and instability in the first approximation; 2.4 Linear stability analysis; 2.4.1 Autonomous systems; 2.4.2 Lyapunov transformation and reducibility; 2.4.3 Periodic systems. 
505 8 |a 2.4.4 Example. Coupled parametric oscillators2.5 Algebraic criteria for asymptotic stability; 2.5.1 Lyapunov's matrix equation and stability criterion; 2.5.2 The Leverrier-Faddeev algorithm and Lewin's formula; 2.5.3 Müller's solution to the matrix Lyapunov equation; 2.5.4 Inertia theorems and observability index; 2.5.5 Hermite's criterion via the matrix Lyapunov equation; 2.5.6 Routh-Hurwitz, Liénard-Chipart, and Bilharz criteria; 2.6 Robust Hurwitz stability vs. structural instability; 2.6.1 Multiple eigenvalues: singularities and structural instabilities. 
505 8 |a 2.6.2 Multiple eigenvalues: spectral abscissa minimization and robust stability3 Hamiltonian and gyroscopic systems; 3.1 Sobolev's top and an indefinite metric; 3.2 Elements of Pontryagin and Krein space theory; 3.3 Canonical and Hamiltonian equations; 3.3.1 Krein signature of eigenvalues; 3.3.2 Krein collision or linear Hamiltonian-Hopf bifurcation; 3.3.3 MacKay's cones, veering, and instability bubbles; 3.3.4 Instability degree and count of eigenvalues; 3.3.5 Graphical interpretation of the Krein signature; 3.3.6 Strong stability: robustness to Hamiltonian's variation. 
500 |a 3.3.7 Inertia theorems and stability of gyroscopic systems. 
520 |a This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics. 
504 |a Includes bibliographies (pages 387-422) and indexes. 
650 0 |a Stability  |x Mathematical models. 
650 0 |a Eigenvalues.  |0 http://id.loc.gov/authorities/subjects/sh85041389 
650 0 |a Oscillations.  |0 http://id.loc.gov/authorities/subjects/sh85095898 
650 0 |a Mechanical impedance.  |0 http://id.loc.gov/authorities/subjects/sh85082762 
650 4 |a Eigenvalues. 
650 4 |a Mechanical impedance. 
650 4 |a Oscillations. 
650 4 |a SCIENCE  |x Energy. 
650 4 |a SCIENCE  |x Mechanics  |x General. 
650 4 |a Stability  |x Mathematical models. 
650 4 |a Physik. 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Eigenvalues.  |2 fast  |0 (OCoLC)fst00904031 
650 7 |a Mechanical impedance.  |2 fast  |0 (OCoLC)fst01013414 
650 7 |a Oscillations.  |2 fast  |0 (OCoLC)fst01048658 
650 7 |a Stability  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01131207 
650 7 |a Stabilität  |2 gnd  |0 http://d-nb.info/gnd/4056693-6 
650 7 |a Physikalisches System  |2 gnd  |0 http://d-nb.info/gnd/4174610-7 
650 7 |a Nichtkonservative Kraft  |2 gnd  |0 http://d-nb.info/gnd/1038403790 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Kirillov, Oleg N.  |t Nonconservative Stability Problems of Modern Physics.  |d Berlin : De Gruyter, ©2013  |z 9783110270341 
830 0 |a De Gruyter studies in mathematical physics.  |0 http://id.loc.gov/authorities/names/no2012028823 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=641747  |y eBooks on EBSCOhost 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641747  |y eBooks on EBSCOhost 
880 0 0 |6 505-00/(S  |t Frontmatter --  |t Preface --  |t Contents --  |t Chapter 1: Introduction --  |t Chapter 2: Lyapunov stability and linear stability analysis --  |t Chapter 3: Hamiltonian and gyroscopic systems --  |t Chapter 4: Reversible and circulatory systems --  |t Chapter 5: Influence of structure of forces on stability --  |t Chapter 6: Dissipation-induced instabilities --  |t Chapter 7: Nonself-adjoint boundary eigenvalue problems for differential operators and operator matrices dependent on parameters --  |t Chapter 8: The destabilization paradox in continuous circulatory systems --  |t Chapter 9: The MHD kinematic mean field α2-dynamo --  |t Chapter 10: Campbell diagrams of gyroscopic continua and subcritical friction-induced flutter --  |t Chapter 11: Non-Hermitian perturbation of Hermitian matrices with physical applications --  |t Chapter 12: Magnetorotational instability --  |t References --  |t Index. 
903 |a HeVa 
903 |a HeVa 
929 |a oclccm 
999 f f |i f72439ac-fa94-5099-9656-6221b981645c  |s 14868f05-5dc7-5bdb-a480-b7991a5a6b8d 
928 |t Library of Congress classification  |a QA871 .K57 2013  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=641747  |z eBooks on EBSCOhost  |g ebooks  |i 12517089 
928 |t Library of Congress classification  |a QA871 .K57 2013  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641747  |z eBooks on EBSCOhost  |g ebooks  |i 12517090