Concepts of chemical engineering 4 chemists /

Saved in:
Bibliographic Details
Imprint:Cambridge : Royal Society of Chemistry, 2007.
Description:1 online resource (xx, 350 pages) : illustrations
Language:English
Series:'4' chemists S.
'4' chemists S.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11163564
Hidden Bibliographic Details
Varying Form of Title:Concepts of chemical engineering
Concepts of chemical engineering for chemists
Other authors / contributors:Simons, Stefaan J. R.
ISBN:9781847557674
1847557678
9781628703610
162870361X
9780854049516
0854049517
Notes:"The book has arisen out of the short course, Concepts of Chemical Engineering for Chemists, held annually at UCL since 1999 and the forerunner to the Royal Society of Chemistry's '4 Chemists' series of professional training courses, of which it is now part."--Preface
Includes bibliographical references and index.
English.
Print version record.
Summary:This product is not available separately, it is only sold as part of a set. There are 750 products in the set and these are all sold as one entity. This product is not available separately, it is only sold as part of a set. There are 750 products in the set and these are all sold as one entity.
Other form:Print version: Concepts of chemical engineering 4 chemists. Cambridge : Royal Society of Chemistry, 2007 9780854049516
Table of Contents:
  • Chapter 1. Process Analysis - The Importance of Mass and EnergyBalances
  • 1.1. Introduction 1
  • 1.1.1. Nomenclature and Units of Measurement 1
  • 1.2. Mass Balances 3
  • 1.2.1. Process Analysis Procedure 4
  • 1.2.2. Example 1: Mass Balance on a Continuous; Distillation Process
  • 1.2.3. Example 2: Mass Balance on a Process with Reaction
  • 1.3. Energy Balances
  • 1.3.1. Example 3: Energy Balance on a Distillation Column
  • 1.4. Summary
  • Recommended Reading
  • Chapter 2. Introduction to Chemical Reaction Engineering
  • 2.1. Introduction
  • 2.1.1. Classification of Reactors
  • 2.2. Chemical Reaction Kinetics
  • 2.2.1. Definitions
  • 2.2.2. Chemical Reaction Thermodynamics
  • 2.2.3. Kinetics
  • 2.2.4. Importance of Mass and Heat TransferProcesses
  • 2.2.5. Kinetics of a Catalytic Reaction
  • 2.3. Concepts of Chemical Reactor Design
  • 2.3.1. Mole Balances for Chemical Reaction
  • 2.3.2. Reactor Design Equation
  • 2.3.3. Comparison between Continuous Stirred Tank;Reactor and Plug Flow Reactor
  • 2.3.4. Recycle Reactor
  • 2.3.5. CSTRs in Series
  • 2.3.6. Multiple Reactions
  • 2.3.7. PFR with Continuous Uniform Feed of Reactant along the Whole Reactor
  • Recommended Reading
  • Chapter 3. Concepts of Fluid Flow
  • 3.1. Introduction
  • 3.2. Dimensionless Groups
  • 3.2.1. Example: Pipe Flow
  • 3.3. Viscosity
  • 3.3.1. Newton's Law of Viscosity
  • 3.3.2. Dynamic and Kinematic Viscosity
  • 3.3.3. Typical Values of Viscosity
  • 3.4. Laminar and Turbulent Flow
  • 3.4.1. Boundary Layers
  • 3.5. Balance or Conservation Equations
  • 3.5.1. General Form of the Conservation Equations
  • 3.5.2. Control Volumes
  • 3.5.3. Continuity Equation (Mass Balance)
  • 3.5.4. Steady-State Momentum (Force) Balance Equation
  • 3.5.5. Steady-State Energy Balances
  • 3.5.6. Example of use of the Conservation Equations
  • 3.6. Pipe Flow
  • 3.6.1. Friction Factors
  • 3.6.2. Losses in Fittings 70
  • 3.6.3. Economic Velocities
  • 3.7. Flow Measurement
  • 3.7.1. Variable Head Meters
  • 3.7.2. Variable Area Meters
  • 3.7.3. Some Other Flowmeters
  • 3.8. Pumps and Pumping
  • 3.8.1. Positive Displacement Pumps
  • 3.8.2. Non-Positive Displacement Pumps
  • 3.8.3. Matching Centrifugal Pumps to FlowRequirements
  • 3.8.4. Pump Power Requirements
  • 3.9. Other Flows
  • 3.9.1. Equivalent Hydraulic Diameter
  • 3.9.2. Flow Around Bodies
  • 3.9.3. Stirred Tanks
  • 3.10. Example Calculations for the Pipe-Flow System
  • 3.10.1. Data
  • 3.10.2. Friction Losses
  • 3.10.3. Orifice Meter
  • 3.10.4. Pump Shaft Work
  • 3.10.5. System Head
  • 3.10.6. Pump Characteristics
  • 3.10.7. Control Valve
  • 3.10.8. Net Positive Suction Head
  • Nomenclature
  • References
  • Chapter 4. An Introduction to Heat Transfer
  • 4.1. Introduction and Objectives
  • 4.1.1. Modes of Heat Transfer
  • 4.1.2. Scope and Objectives
  • 4.2. Modes of Heat Transfer
  • 4.2.1. Conduction
  • 4.2.2. Convection
  • 4.2.3. Radiation
  • 4.3. The Overall Heat Transfer Coefficient, U
  • 4.3.1. Example Calculation of U
  • 4.3.2. Overall Heat Transfer Coefficients with Curvature, for Example, Transfer through a Pipe Wall
  • 4.3.3. Overall Heat Transfer Coefficients with Convection and Radiation
  • 4.4. Transient Heat Transfer
  • 4.4.1. Example Calculation, Small Bi Case: Cooling of a Copper Sphere in Air
  • 4.4.2. Example Calculation, Large Bi Case: Cooling of a Perspex Plate in Water
  • 4.5. Heat Exchangers
  • 4.5.1. Double Pipe Heat Exchanger
  • 4.5.2. Heat Transfer in Heat Exchangers
  • 4.5.3. Performance of Heat Exchangers - Fouling
  • 4.5.4. Types of Heat Exchangers
  • 4.5.5. Numerical Examples
  • 4.6. Conclusions
  • Nomenclature
  • References
  • Chapter 5. An Introduction to Mass-Transfer Operations
  • 5.1. Introduction
  • 5.2. Mechanisms of Separation
  • 5.3. General Separation Techniques
  • 5.3.1. Separation by Phase Addition or Phase Creation
  • 5.3.2. Separation by Barrier
  • 5.3.3. Separation by Solid Agent
  • 5.4. Mass Transfer Calculations
  • 5.4.1. Equilibrium-Stage Processes
  • 5.4.2. Stage Calculations
  • 5.4.3. Graphical Methods
  • 5.4.4. Diffusional Rate Processes
  • 5.4.5. Diffusion Calculations
  • 5.5. Separation by Distillation
  • 5.5.1. Trays and Packing
  • 5.5.2. Design Range
  • 5.5.3. Operating Range
  • 5.5.4. Design Calculations
  • 5.5.5. Distillation Column Height
  • 5.6. Separation by Absorption
  • 5.6.1. Design Range
  • 5.6.2. Operating Range
  • 5.6.3. Design Calculations
  • 5.6.4. Amount of Solvent
  • 5.6.5. Absorption Column Height
  • 5.7. Further Reading
  • 5.8. Relevant Material not Considered in this Chapter
  • 5.8.1. Combined Reaction and Separation
  • 5.8.2. Combined Separation Units
  • 5.8.3. Batch Operation
  • References
  • Chapter 6. Scale-Up in Chemical Engineering
  • 6.1. Introduction and Objectives
  • 6.2. Units and Fundamental Dimensions
  • 6.3. Physical Similarity
  • 6.3.1. Geometric Similarity
  • 6.3.2. Dynamic Similarity
  • 6.3.3. Dimensionless Groups
  • 6.4. Dimensional Homogeneity
  • 6.5. Dimensional Analysis and DimensionlessGroups
  • 6.5.1. Example: Dimensional Analysis
  • 6.6. Buckingham Pi Theorem and Method
  • 6.6.1. Buckingham Pi Theorem
  • 6.6.2. Buckingham's Method - Procedure
  • 6.6.3. Example: Drag Force on a Sphere
  • 6.7. Use of Dimensionless Groups in Scale-Up
  • 6.7.1. Drag Force on a Particle
  • 6.7.2. Pressure Drop in a Pipe
  • 6.7.3. Modelling Flow Around a Body Immersed in a Fluid
  • 6.7.4. Heat Transfer
  • 6.7.5. Mass Transfer
  • 6.7.6. Correlation of ExperimentalData - Formation of Gas Bubbles at an Orifice
  • 6.7.7. Application of Scale-Up in Stirred Vessels
  • 6.7.8. Incompatibility of Some Equations
  • 6.8. Conclusions
  • Nomenclature
  • References