Organic solar cells : theory, experiment, and device simulation /

Saved in:
Bibliographic Details
Author / Creator:Tress, Wolfgang, 1948- author.
Imprint:Cham : Springer, 2014.
Description:1 online resource (xx, 464 pages) : illustrations (some color).
Language:English
Series:Springer series in materials science ; 208
Springer series in materials science ; 208.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11089872
Hidden Bibliographic Details
ISBN:9783319100975
3319100971
3319100963
9783319100968
9783319100968
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed January 22, 2015).
Summary:This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author?s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
Other form:Printed edition: 9783319100968
Standard no.:10.1007/978-3-319-10097-5