An introduction to non-abelian discrete symmetries for particle physicists /

These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control cou...

Full description

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, ©2012.
Description:1 online resource.
Language:English
Series:Lecture notes in physics, 1616-6361 ; v. 858
Lecture notes in physics ; 858.
Subject:Non-Abelian groups.
Mathematical physics.
Physique.
Astronomie.
Mathematical physics.
Non-Abelian groups.
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11077165
Hidden Bibliographic Details
Other authors / contributors:Ishimori, H. (Hajime)
ISBN:9783642308055
3642308058
364230804X
9783642308048
9783642308048
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed March 21, 2014).
Summary:These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding - thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics. This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest.
LEADER 04419cam a2200589Ia 4500
001 11077165
005 20170630045836.8
006 m o d
007 cr cnu---unuuu
008 120803s2012 gw ob 001 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d ZMC  |d COO  |d OCLCQ  |d E7B  |d OCLCF  |d IXA  |d BEDGE  |d YDXCP  |d OCLCQ  |d EBLCP  |d OCLCQ  |d MYUML 
019 |a 847480708 
020 |a 9783642308055  |q (electronic bk.) 
020 |a 3642308058  |q (electronic bk.) 
020 |a 364230804X 
020 |a 9783642308048 
020 |z 9783642308048 
035 |a (OCoLC)803972984  |z (OCoLC)847480708 
050 4 |a QA171  |b .I58 2012 
049 |a MAIN 
245 0 3 |a An introduction to non-abelian discrete symmetries for particle physicists /  |c Hajime Ishimori [and others]. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in physics,  |x 1616-6361 ;  |v v. 858 
505 0 0 |t Introduction --  |t Basics of Finite Groups --  |t SN --  |t AN --  |t T' --  |t DN --  |t QN --  |t QD2N --  |t [Sigma](2N2) --  |t [Delta](3N2) --  |t TN --  |t [Sigma](3N3) --  |t [Delta](6N2) --  |t Subgroups and Decompositions of Multiplets --  |t Anomalies --  |t Non-Abelian Discrete Symmetry in Quark/Lepton Flavor Models. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 21, 2014). 
520 |a These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding - thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics. This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest. 
650 0 |a Non-Abelian groups.  |0 http://id.loc.gov/authorities/subjects/sh85092216 
650 0 |a Mathematical physics.  |0 http://id.loc.gov/authorities/subjects/sh85082129 
650 7 |a Physique.  |2 eclas 
650 7 |a Astronomie.  |2 eclas 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Non-Abelian groups.  |2 fast  |0 (OCoLC)fst01038477 
653 4 |a Physics. 
653 4 |a Group theory. 
653 4 |a Mathematical physics. 
653 4 |a Quantum theory. 
653 4 |a Elementary Particles, Quantum Field Theory. 
653 4 |a Mathematical Methods in Physics. 
653 4 |a Group Theory and Generalizations. 
655 4 |a Electronic books. 
700 1 |a Ishimori, H.  |q (Hajime)  |0 http://id.loc.gov/authorities/names/no2010109576  |1 http://viaf.org/viaf/122401815 
830 0 |a Lecture notes in physics ;  |v 858.  |x 0075-8450 
856 4 0 |u http://link.springer.com/10.1007/978-3-642-30805-5  |y SpringerLink 
903 |a HeVa 
999 f f |i 69548137-587a-56d0-a42e-fc35068bfe22  |s 46e080fb-d346-540c-83ab-08123cf85246 
928 |t Library of Congress classification  |a QA171 .I58 2012  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-642-30805-5  |z SpringerLink  |g ebooks  |i 9887347