Artificial perception and music recognition /

This monograph presents the author's studies in music recognition aimed at developing a computer system for automatic notation of performed music. The performance of such a system is supposed to be similar to that of speech recognition systems: acoustical data at the input and music scoreprinti...

Full description

Saved in:
Bibliographic Details
Author / Creator:Tanguiane, Andranick S., 1952-
Imprint:Berlin ; New York : Springer-Verlag, ©1993.
Description:1 online resource (xiv, 210 pages) : illustrations.
Language:English
Series:Lecture notes in computer science, 0302-9743 ; 746. Lecture notes in artificial intelligence
Lecture notes in computer science ; 746.
Lecture notes in computer science. Lecture notes in artificial intelligence.
Subject:Artificial intelligence -- Musical applications.
Computer sound processing.
Musical notation -- Data processing.
Artificial intelligence -- Musical applications.
Computer sound processing.
Musical notation -- Data processing.
Electronic books.
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11071830
Hidden Bibliographic Details
ISBN:9783540481270
3540481273
3540573941
9783540573944
0387573941
9780387573946
Notes:Includes bibliographical references (pages 185-200) and indexes.
Online resource; title from PDF title page (SpringerLink, viewed Oct. 9, 2013).
Summary:This monograph presents the author's studies in music recognition aimed at developing a computer system for automatic notation of performed music. The performance of such a system is supposed to be similar to that of speech recognition systems: acoustical data at the input and music scoreprinting at the output. The approach to pattern recognition employed is thatof artificial perception, based on self-organizing input data in order to segregate patterns before their identification by artificial intelligencemethods. The special merit of the approach is that it finds optimal representations of data instead of directly recognizing patterns.
Other form:Print version: Tanguiane, Andranick S., 1952- Artificial perception and music recognition. Berlin ; New York : Springer-Verlag, ©1993 3540573941
LEADER 03566cam a2200529Ia 4500
001 11071830
005 20170630045657.9
006 m o d
007 cr unu||||||||
008 930914s1993 gw a ob 101 0 eng d
003 ICU
040 |a SCPER  |b eng  |e pn  |c CUSER  |d OCLCQ  |d C$Q  |d GW5XE  |d OCLCA  |d OCLCF  |d GW5XE  |d OCLCQ 
020 |a 9783540481270  |q (electronic bk.) 
020 |a 3540481273  |q (electronic bk.) 
020 |z 3540573941  |q (Berlin ;  |q acidfree paper) 
020 |z 9783540573944  |q (Berlin ;  |q acidfree paper) 
020 |z 0387573941  |q (New York ;  |q acidfree paper) 
020 |z 9780387573946  |q (New York ;  |q acidfree paper) 
035 |a (OCoLC)321283584 
050 4 |a ML74  |b .T36 1993 
049 |a MAIN 
100 1 |a Tanguiane, Andranick S.,  |d 1952-  |0 http://id.loc.gov/authorities/names/n91021067  |1 http://viaf.org/viaf/113416947 
245 1 0 |a Artificial perception and music recognition /  |c Andranick S. Tanguiane. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©1993. 
300 |a 1 online resource (xiv, 210 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in computer science,  |x 0302-9743 ;  |v 746.  |a Lecture notes in artificial intelligence 
504 |a Includes bibliographical references (pages 185-200) and indexes. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed Oct. 9, 2013). 
520 |a This monograph presents the author's studies in music recognition aimed at developing a computer system for automatic notation of performed music. The performance of such a system is supposed to be similar to that of speech recognition systems: acoustical data at the input and music scoreprinting at the output. The approach to pattern recognition employed is thatof artificial perception, based on self-organizing input data in order to segregate patterns before their identification by artificial intelligencemethods. The special merit of the approach is that it finds optimal representations of data instead of directly recognizing patterns. 
650 0 |a Artificial intelligence  |x Musical applications.  |0 http://id.loc.gov/authorities/subjects/sh92002683 
650 0 |a Computer sound processing.  |0 http://id.loc.gov/authorities/subjects/sh85029539 
650 0 |a Musical notation  |x Data processing. 
650 7 |a Artificial intelligence  |x Musical applications.  |2 fast  |0 (OCoLC)fst00817274 
650 7 |a Computer sound processing.  |2 fast  |0 (OCoLC)fst00872627 
650 7 |a Musical notation  |x Data processing.  |2 fast  |0 (OCoLC)fst01030782 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Tanguiane, Andranick S., 1952-  |t Artificial perception and music recognition.  |d Berlin ; New York : Springer-Verlag, ©1993  |z 3540573941  |w (DLC) 93021437  |w (OCoLC)28929528 
830 0 |a Lecture notes in computer science ;  |v 746.  |x 0302-9743 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence.  |0 http://id.loc.gov/authorities/names/n42015162 
856 4 0 |u http://link.springer.com/10.1007/BFb0019384  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 2ab099a9-e345-5bd4-813a-7bf61918e9ae  |s eb55f9df-4354-5ae6-b8da-8a73e978fa53 
928 |t Library of Congress classification  |a ML74 .T36 1993  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0019384  |z SpringerLink  |g ebooks  |i 9879914