Hybrid, multidimensional magnetic resonance imaging of prostate cancer /

Saved in:
Bibliographic Details
Author / Creator:Sadinski, Meredith, author.
Imprint:2016.
Ann Arbor : ProQuest Dissertations & Theses, 2016
Description:1 electronic resource (116 pages)
Language:English
Format: E-Resource Dissertations
Local Note:School code: 0330
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10862923
Hidden Bibliographic Details
Other authors / contributors:University of Chicago. degree granting institution.
ISBN:9781339874555
Notes:Advisors: Gregory Karzmar; Aytekin Oto Committee members: Yulei Jiang; Milica Medved; Steffen Sammet.
Dissertation Abstracts International, Volume: 77-10(E), Section: B.
English
Summary:Prostate cancer is the most commonly diagnosed cancer among men, estimated to affect one in six American men. Despite its high prevalence, nearly 50% of prostate cancer is insignificant and unrelated to cause of death of the patient. It is thus of paramount importance that physicians are able to make informed decisions on course of treatment for prostate cancer patients; an aggressive treatment option such as radiation therapy or surgery with risk of adverse side effects is necessary for high grade cancers while active surveillance may be sufficient for lower grade cancers. Current methods for assessing the aggressiveness of prostate cancer are insufficient and repeat biopsies or histological analysis of prostatectomy specimens often show disagreement with initial staging. MRI has become a useful, non-invasive tool for prostate cancer screening. A clinical multiparametric MRI (mp-MRI) exam typically includes T1, T2 and apparent diffusion coefficient (ADC) maps, extracted from T1-weighted, T2-weighted and diffusion-weighted MRI (DWI) sequences, respectively. However, the efficacy of PCa MRI is limited by the inability to distinguish the signal from cancerous foci from the background signal from normal tissue using standard, clinical MRI sequences.
This dissertation investigates a hybrid, multidimensional imaging approach to prostate MRI, which looks at how standard measures (ADC, T1, T2) react to changes in sequence parameters (TE, TR, b). This enables a selective filtration of particular tissue components and subsequent emphasis of differences in tissue structure indicative of prostate cancer. My results suggest that using hybrid imaging to identify differences in tissue structure could lead to better differentiation between normal tissue, aggressive prostate cancer and benign tumors or conditions. Hybrid imaging provides structural information undetectable using conventional mp-MRI. It may therefore provide independent, diagnostic information that compliments ADC, T1 or T2 values and increase diagnostic accuracy when used in combination with conventional mp-MRI. Structural markers such as decreased luminal volume, increased cellularity, and nucleomegaly become more prominent with increased Gleason Score. Hybrid MRI may therefore be useful for noninvasively determining Gleason Score in the future.
LEADER 04696ntm a22004573i 4500
001 10862923
003 ICU
005 20161201101027.4
006 m o d
007 cr un|---|||||
008 160729s2016 miu|||||om |||||||eng d
020 |a 9781339874555 
035 |a (MiAaPQD)AAI10129564 
035 |a AAI10129564 
040 |a MiAaPQD  |b eng  |c MiAaPQD  |e rda 
100 1 |a Sadinski, Meredith,  |e author. 
245 1 0 |a Hybrid, multidimensional magnetic resonance imaging of prostate cancer /  |c Sadinski, Meredith. 
260 |c 2016. 
264 1 |a Ann Arbor :  |b ProQuest Dissertations & Theses,  |c 2016 
300 |a 1 electronic resource (116 pages) 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
500 |a Advisors: Gregory Karzmar; Aytekin Oto Committee members: Yulei Jiang; Milica Medved; Steffen Sammet. 
502 |b Ph.D.  |c University of Chicago, Division of the Biological Sciences, Committee on Medical Physics  |d 2016. 
510 4 |a Dissertation Abstracts International,  |c Volume: 77-10(E), Section: B. 
520 |a Prostate cancer is the most commonly diagnosed cancer among men, estimated to affect one in six American men. Despite its high prevalence, nearly 50% of prostate cancer is insignificant and unrelated to cause of death of the patient. It is thus of paramount importance that physicians are able to make informed decisions on course of treatment for prostate cancer patients; an aggressive treatment option such as radiation therapy or surgery with risk of adverse side effects is necessary for high grade cancers while active surveillance may be sufficient for lower grade cancers. Current methods for assessing the aggressiveness of prostate cancer are insufficient and repeat biopsies or histological analysis of prostatectomy specimens often show disagreement with initial staging. MRI has become a useful, non-invasive tool for prostate cancer screening. A clinical multiparametric MRI (mp-MRI) exam typically includes T1, T2 and apparent diffusion coefficient (ADC) maps, extracted from T1-weighted, T2-weighted and diffusion-weighted MRI (DWI) sequences, respectively. However, the efficacy of PCa MRI is limited by the inability to distinguish the signal from cancerous foci from the background signal from normal tissue using standard, clinical MRI sequences. 
520 |a This dissertation investigates a hybrid, multidimensional imaging approach to prostate MRI, which looks at how standard measures (ADC, T1, T2) react to changes in sequence parameters (TE, TR, b). This enables a selective filtration of particular tissue components and subsequent emphasis of differences in tissue structure indicative of prostate cancer. My results suggest that using hybrid imaging to identify differences in tissue structure could lead to better differentiation between normal tissue, aggressive prostate cancer and benign tumors or conditions. Hybrid imaging provides structural information undetectable using conventional mp-MRI. It may therefore provide independent, diagnostic information that compliments ADC, T1 or T2 values and increase diagnostic accuracy when used in combination with conventional mp-MRI. Structural markers such as decreased luminal volume, increased cellularity, and nucleomegaly become more prominent with increased Gleason Score. Hybrid MRI may therefore be useful for noninvasively determining Gleason Score in the future. 
546 |a English 
590 |a School code: 0330 
690 |a Medical imaging. 
710 2 |a University of Chicago.  |e degree granting institution.  |0 http://id.loc.gov/authorities/names/n79058404  |1 http://viaf.org/viaf/143657677 
720 1 |a Gregory Karzmar  |e degree supervisor. 
720 1 |a Aytekin Oto  |e degree supervisor. 
856 4 0 |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10129564  |y ProQuest 
856 4 0 |u http://dx.doi.org/10.6082/M15D8PS4  |y Knowledge@UChicago 
903 |a HeVa 
929 |a eresource 
999 f f |i 05052020-b675-5144-833a-af7f41f09cd1  |s a7886097-42d6-5aa5-b492-33f600180b48 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10129564  |z ProQuest  |g ebooks  |i 9267021 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u http://dx.doi.org/10.6082/M15D8PS4  |z Knowledge@UChicago  |g ebooks  |i 9371925