Geometry, topology and anomalies in Effective Field Theories of condensed matter systems /

Saved in:
Bibliographic Details
Author / Creator:Golkar, Siavash, author.
Imprint:2015.
Ann Arbor : ProQuest Dissertations & Theses, 2015
Description:1 electronic resource (123 pages)
Language:English
Format: E-Resource Dissertations
Local Note:School code: 0330
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10773348
Hidden Bibliographic Details
Other authors / contributors:University of Chicago. degree granting institution.
ISBN:9781339320359
Notes:Advisors: Dam T. Son Committee members: Woowon Kang; Kathryn Levin; Savdeep Sethi.
Dissertation Abstracts International, Volume: 77-05(E), Section: B.
English
Summary:In this thesis we discuss the use of topology and anomalies in the context of effective field theories governing condensed matter systems. After reviewing the related concepts of EFTs, topology and anomalies, we investigate how these concepts can be applied in various condensed matter systems. We first look at the case of anomalous transport in hydrodynamics where the use of anomalies can determine some (but not all) unknown coefficients in the action. We proceed to show that the CVE coefficient that is not fixed by anomalies is not renormalized by interactions and discuss how it can be related to large gauge and diffeomorphism anomalies. We then analyze the EFT governing quantum Hall states in particular we propose a description of relativistic quantum hall which can be applied to graphene. In order to do so we introduce the Euler current, a topological current which is identically conserved in odd dimensions and whose charge is the Euler characteristic of the codimension one surface on which it is calculated. We follow this analysis by considering the case of relativistic superfluids and again see that the Euler current plays a crucial part in implementing topological considerations in the effective field theory. In all these cases, we derive non-trivial predictions for transport coefficients based on the matching EFT parameters to topological considerations.

MARC

LEADER 00000ntm a22000003i 4500
001 10773348
005 20230629205559.2
007 cr un|---|||||
008 160217s2015 miu||||||m |||| ||eng d
003 ICU
020 |a 9781339320359 
035 |a (MiAaPQD)AAI3740053 
040 |a MiAaPQD  |b eng  |c MiAaPQD  |e rda 
100 1 |a Golkar, Siavash,  |e author. 
245 1 0 |a Geometry, topology and anomalies in Effective Field Theories of condensed matter systems /  |c Golkar, Siavash. 
260 |c 2015. 
264 1 |a Ann Arbor :  |b ProQuest Dissertations & Theses,  |c 2015 
300 |a 1 electronic resource (123 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Advisors: Dam T. Son Committee members: Woowon Kang; Kathryn Levin; Savdeep Sethi. 
502 |b Ph.D.  |c The University of Chicago, Division of the Physical Sciences, Department of Physics  |d 2015. 
510 4 |a Dissertation Abstracts International,  |c Volume: 77-05(E), Section: B. 
520 |a In this thesis we discuss the use of topology and anomalies in the context of effective field theories governing condensed matter systems. After reviewing the related concepts of EFTs, topology and anomalies, we investigate how these concepts can be applied in various condensed matter systems. We first look at the case of anomalous transport in hydrodynamics where the use of anomalies can determine some (but not all) unknown coefficients in the action. We proceed to show that the CVE coefficient that is not fixed by anomalies is not renormalized by interactions and discuss how it can be related to large gauge and diffeomorphism anomalies. We then analyze the EFT governing quantum Hall states in particular we propose a description of relativistic quantum hall which can be applied to graphene. In order to do so we introduce the Euler current, a topological current which is identically conserved in odd dimensions and whose charge is the Euler characteristic of the codimension one surface on which it is calculated. We follow this analysis by considering the case of relativistic superfluids and again see that the Euler current plays a crucial part in implementing topological considerations in the effective field theory. In all these cases, we derive non-trivial predictions for transport coefficients based on the matching EFT parameters to topological considerations. 
546 |a English 
590 |a School code: 0330 
690 |a Condensed matter physics. 
710 2 |a University of Chicago.  |e degree granting institution. 
720 1 |a Dam T. Son  |e degree supervisor. 
856 4 0 |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3740053  |y ProQuest 
035 |a AAI3740053 
929 |a eresource 
999 f f |i 298d8201-7e91-516e-921b-170b462ada15  |s 3b9797b4-217f-50c7-bb3b-0c0b2cc8a971 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3740053  |z ProQuest  |i 9079574