Magnetic flux compression experiments using plasma armatures /

Saved in:
Bibliographic Details
Author / Creator:Turner, M. W., author.
Imprint:MSFC, Alabama : National Aeronautics and Space Administration, Marshall Space Flight Center, March 2003.
Description:1 online resource (ix, 29 pages) : illustrations.
Language:English
Series:NASA/TP ; 2003-212341
NASA technical paper ; 2003-212341.
Subject:Plasma compression.
Magnetic flux.
Reynolds number.
Plasma jets.
Plasma dynamics.
Magnetic flux.
Plasma dynamics.
Plasma jets.
Reynolds number.
Format: E-Resource U.S. Federal Government Document Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10752940
Hidden Bibliographic Details
Other authors / contributors:Hawk, C. W., author.
Litchford, R. J., author.
George C. Marshall Space Flight Center, issuing body.
United States. National Aeronautics and Space Administration, sponsoring body.
Notes:Title from title screen (viewed Sept. 4, 2015).
"March 2003."
Includes bibliographical references (page 13).
Sponsored by the National Aeronautics and Space Administration M-1069
Summary:Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact.

A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (Rm), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires Rm>>1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields.

As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

Other form:Print version: Turner, M. W. Magnetic flux compression experiments using plasma armatures
GPO item no.:0830-H-15 (online)
Govt.docs classification:NAS 1.60:2003-212341
LEADER 04569nam a2200565Ii 4500
001 10752940
005 20150904141216.0
006 m o d f
007 cr bn|||||||||
008 110225e200303 alua sbt f000 0 eng d
003 ICU
035 |a (OCoLC)703646267 
040 |a SSM  |b eng  |e rda  |e pn  |c SSM  |d GPO  |d MvI 
042 |a dc 
074 |a 0830-H-15 (online) 
086 0 |a NAS 1.60:2003-212341 
100 1 |a Turner, M. W.,  |e author.  |0 http://id.loc.gov/authorities/names/n88038467  |1 http://viaf.org/viaf/95334550 
245 1 0 |a Magnetic flux compression experiments using plasma armatures /  |c M.W. Turner and C.W. Hawk, R.J. Litchford. 
264 1 |a MSFC, Alabama :  |b National Aeronautics and Space Administration, Marshall Space Flight Center,  |c March 2003. 
300 |a 1 online resource (ix, 29 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a NASA/TP ;  |v 2003-212341 
500 |a Title from title screen (viewed Sept. 4, 2015). 
500 |a "March 2003." 
504 |a Includes bibliographical references (page 13). 
520 8 |a Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. <p/> A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (Rm), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires Rm>>1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. <p/> As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m. 
536 |a Sponsored by the National Aeronautics and Space Administration  |d M-1069 
650 7 |a Plasma compression.  |2 nasat 
650 7 |a Magnetic flux.  |2 nasat 
650 7 |a Reynolds number.  |2 nasat 
650 7 |a Plasma jets.  |2 nasat 
650 7 |a Plasma dynamics.  |2 nasat 
650 7 |a Magnetic flux.  |2 fast  |0 http://id.worldcat.org/fast/fst01005712 
650 7 |a Plasma dynamics.  |2 fast  |0 http://id.worldcat.org/fast/fst01066317 
650 7 |a Plasma jets.  |2 fast  |0 http://id.worldcat.org/fast/fst01066343 
650 7 |a Reynolds number.  |2 fast  |0 http://id.worldcat.org/fast/fst01096833 
653 |a Spacecraft Propulsion And Power 
700 1 |a Hawk, C. W.,  |e author. 
700 1 |a Litchford, R. J.,  |e author. 
710 2 |a George C. Marshall Space Flight Center,  |e issuing body.  |0 http://id.loc.gov/authorities/names/n79105937  |1 http://viaf.org/viaf/134172137 
710 1 |a United States.  |b National Aeronautics and Space Administration,  |e sponsoring body.  |0 http://id.loc.gov/authorities/names/n78087581  |1 http://viaf.org/viaf/146202023 
776 0 8 |i Print version:  |a Turner, M. W.  |t Magnetic flux compression experiments using plasma armatures  |w (OCoLC)52163178 
830 0 |a NASA technical paper ;  |v 2003-212341. 
856 4 0 |u http://purl.fdlp.gov/GPO/gpo60340  |y GPO Documents Without Shelves 
903 |a HeVa 
929 |a eresource 
999 f f |i dc2ab778-ca82-57d3-9a11-ce4a4c1c0c40  |s e6b58267-b20d-55c5-b809-f5234b7b5fd3 
928 |t Library of Congress classification  |l Online  |c UC-FullText  |u http://purl.fdlp.gov/GPO/gpo60340  |z GPO Documents Without Shelves  |g ebooks  |i 8936414